Open Access iconOpen Access

ARTICLE

crossmark

Detection of Fuel Adulteration Using Wave Optical with Machine Learning Algorithms

S. Dilip Kumar1,*, T. V. Sivasubramonia Pillai2

1 Department of Instrumentation and Control Engineering, Sri Krishna College of Technology, Coimbatore, 641105, Tamilnadu, India
2 Department of Physics, University College of Engineering, Nagercoil, 629004, Tamilnadu, India

* Corresponding Author: S. Dilip Kumar. Email: email

Computer Systems Science and Engineering 2022, 41(1), 19-33. https://doi.org/10.32604/csse.2022.019366

Abstract

Fuel is a very important factor and has considerable influence on the air quality in the environment, which is the heart of the world. The increase of vehicles in lived-in areas results in greater emission of carbon particles in the environment. Adulterated fuel causes more contaminated particles to mix with breathing air and becomes the main source of dangerous pollution. Adulteration is the mixing of foreign substances in fuel, which damages vehicles and causes more health problems in living beings such as humans, birds, aquatic life, and even water resources by emitting high levels of hydrocarbons, nitrogen oxides, and carbon monoxide. Most frequent blending liquids are lubricants and kerosene in the petrol, and its adulteration is a considerable problem that adds to environmental pollution. This study focuses on detecting the adulteration in petrol using sensors and machine learning algorithms. A modified evanescent wave optical fiber sensor with discrete wavelet transform is proposed for classification of adulterated data from the samples. Furthermore, support vector machine classifier is used for accurate categorization. The sensor is first tested with fuel and numerical data is classified based on machine learning algorithms. Finally, the result is evaluated with less error and high accuracy of 99.9%, which is higher than all existing techniques.

Keywords


Cite This Article

APA Style
Kumar, S.D., Pillai, T.V.S. (2022). Detection of fuel adulteration using wave optical with machine learning algorithms. Computer Systems Science and Engineering, 41(1), 19-33. https://doi.org/10.32604/csse.2022.019366
Vancouver Style
Kumar SD, Pillai TVS. Detection of fuel adulteration using wave optical with machine learning algorithms. Comput Syst Sci Eng. 2022;41(1):19-33 https://doi.org/10.32604/csse.2022.019366
IEEE Style
S.D. Kumar and T.V.S. Pillai, “Detection of Fuel Adulteration Using Wave Optical with Machine Learning Algorithms,” Comput. Syst. Sci. Eng., vol. 41, no. 1, pp. 19-33, 2022. https://doi.org/10.32604/csse.2022.019366



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1698

    View

  • 1116

    Download

  • 0

    Like

Share Link