Open Access iconOpen Access

ARTICLE

crossmark

Classification and Diagnosis of Lymphoma’s Histopathological Images Using Transfer Learning

Schahrazad Soltane*, Sameer Alsharif , Salwa M.Serag Eldin

College of Computers and Information Technology, Computer Engineering Department, Taif University, Taif, Kingdom of Saudi Arabia

* Corresponding Author: Schahrazad Soltane. Email: email

Computer Systems Science and Engineering 2022, 40(2), 629-644. https://doi.org/10.32604/csse.2022.019333

Abstract

Current cancer diagnosis procedure requires expert knowledge and is time-consuming, which raises the need to build an accurate diagnosis support system for lymphoma identification and classification. Many studies have shown promising results using Machine Learning and, recently, Deep Learning to detect malignancy in cancer cells. However, the diversity and complexity of the morphological structure of lymphoma make it a challenging classification problem. In literature, many attempts were made to classify up to four simple types of lymphoma. This paper presents an approach using a reliable model capable of diagnosing seven different categories of rare and aggressive lymphoma. These Lymphoma types are Classical Hodgkin Lymphoma, Nodular Lymphoma Predominant, Burkitt Lymphoma, Follicular Lymphoma, Mantle Lymphoma, Large B-Cell Lymphoma, and T-Cell Lymphoma. Our proposed approach uses Residual Neural Networks, ResNet50, with a Transfer Learning for lymphoma’s detection and classification. The model used results are validated according to the performance evaluation metrics: Accuracy, precision, recall, F-score, and kappa score for the seven multi-classes. Our algorithms are tested, and the results are validated on 323 images of 224 × 224 pixels resolution. The results are promising and show that our used model can classify and predict the correct lymphoma subtype with an accuracy of 91.6%.

Keywords


Cite This Article

APA Style
Soltane, S., Alsharif, S., Eldin, S.M. (2022). Classification and diagnosis of lymphoma’s histopathological images using transfer learning. Computer Systems Science and Engineering, 40(2), 629-644. https://doi.org/10.32604/csse.2022.019333
Vancouver Style
Soltane S, Alsharif S, Eldin SM. Classification and diagnosis of lymphoma’s histopathological images using transfer learning. Comput Syst Sci Eng. 2022;40(2):629-644 https://doi.org/10.32604/csse.2022.019333
IEEE Style
S. Soltane, S. Alsharif, and S.M. Eldin, “Classification and Diagnosis of Lymphoma’s Histopathological Images Using Transfer Learning,” Comput. Syst. Sci. Eng., vol. 40, no. 2, pp. 629-644, 2022. https://doi.org/10.32604/csse.2022.019333

Citations




cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2008

    View

  • 1205

    Download

  • 3

    Like

Share Link