Open Access iconOpen Access

ARTICLE

crossmark

An Automated Brain Image Analysis System for Brain Cancer using Shearlets

by R. Muthaiyan1,*, Dr M. Malleswaran2

1 Department of Electronics and Communication Engineering, University College of Engineering Thirukkuvalai, Tamilnadu, 610204, India
2 Department of Electronics and Communication Engineering, University College of Engineering Kancheepuram, Kancheepuram, 631552, India

* Corresponding Author: R. Muthaiyan. Email: email

Computer Systems Science and Engineering 2022, 40(1), 299-312. https://doi.org/10.32604/csse.2022.018034

Abstract

In this paper, an Automated Brain Image Analysis (ABIA) system that classifies the Magnetic Resonance Imaging (MRI) of human brain is presented. The classification of MRI images into normal or low grade or high grade plays a vital role for the early diagnosis. The Non-Subsampled Shearlet Transform (NSST) that captures more visual information than conventional wavelet transforms is employed for feature extraction. As the feature space of NSST is very high, a statistical t-test is applied to select the dominant directional sub-bands at each level of NSST decomposition based on sub-band energies. A combination of features that includes Gray Level Co-occurrence Matrix (GLCM) based features, Histograms of Positive Shearlet Coefficients (HPSC), and Histograms of Negative Shearlet Coefficients (HNSC) are estimated. The combined feature set is utilized in the classification phase where a hybrid approach is designed with three classifiers; k-Nearest Neighbor (kNN), Naive Bayes (NB) and Support Vector Machine (SVM) classifiers. The output of individual trained classifiers for a testing input is hybridized to take a final decision. The quantitative results of ABIA system on Repository of Molecular Brain Neoplasia Data (REMBRANDT) database show the overall improved performance in comparison with a single classifier model with accuracy of 99% for normal/abnormal classification and 98% for low and high risk classification.

Keywords


Cite This Article

APA Style
Muthaiyan, R., Malleswaran, D.M. (2022). An automated brain image analysis system for brain cancer using shearlets. Computer Systems Science and Engineering, 40(1), 299-312. https://doi.org/10.32604/csse.2022.018034
Vancouver Style
Muthaiyan R, Malleswaran DM. An automated brain image analysis system for brain cancer using shearlets. Comput Syst Sci Eng. 2022;40(1):299-312 https://doi.org/10.32604/csse.2022.018034
IEEE Style
R. Muthaiyan and D. M. Malleswaran, “An Automated Brain Image Analysis System for Brain Cancer using Shearlets,” Comput. Syst. Sci. Eng., vol. 40, no. 1, pp. 299-312, 2022. https://doi.org/10.32604/csse.2022.018034



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2095

    View

  • 1277

    Download

  • 0

    Like

Share Link