Open Access
ARTICLE
Multi Criteria Decision Making System for Parking System
College of Arts and Science, Prince Sattam bin Abdulaziz University, 11990, Saudi Arabia
* Corresponding Author: Manjur Kolhar. Email:
Computer Systems Science and Engineering 2021, 36(1), 101-116. https://doi.org/10.32604/csse.2021.014915
Received 27 October 2020; Accepted 11 November 2020; Issue published 23 December 2020
Abstract
System supported smart parking can reduce traffic by making it stress free to locate empty parking spaces, hence lowering the risk of unfocussed driving. In this study, we propose a smart parking system using deep learning and an application-based approach. This system has two modules, one module detects and recognizes a license plate (LP), and the other selects a parking space; both modules use deep learning techniques. We used two modules that work independently to detect and recognize an LP by using an image of the vehicle. To detect parking space, only deep learning techniques were used. The two modules were compared with other state-of-the-art solutions. We utilized the You Only Look Once (YOLO) architecture to detect and recognize an LP because its performance in the context of Saudi Arabian LP numbers was superior to that of other solutions. Compared with existing state-of-the-art solutions, the performance of the proposed solution was more effective. The solution can be further improved for use in the city and large organizations that have priority parking spaces. A dataset of LP-annotated images of vehicles was used. The results of this study have considerable implications for smart parking, particularly in universities; in addition, they can be utilized for smart cities.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.