Open Access iconOpen Access

ARTICLE

crossmark

Advancing PCB Quality Control: Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection

by Rehman Ullah Khan1, Fazal Shah2,*, Ahmad Ali Khan3, Hamza Tahir2

1 Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Malaysia
2 School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
3 Department Electronic, Quaid-i-Azam University, Islamabad, 45320, Pakistan

* Corresponding Author: Fazal Shah. Email: email

Computers, Materials & Continua 2024, 81(1), 345-367. https://doi.org/10.32604/cmc.2024.054439

Abstract

Printed Circuit Boards (PCBs) are materials used to connect components to one another to form a working circuit. PCBs play a crucial role in modern electronics by connecting various components. The trend of integrating more components onto PCBs is becoming increasingly common, which presents significant challenges for quality control processes. Given the potential impact that even minute defects can have on signal traces, the surface inspection of PCB remains pivotal in ensuring the overall system integrity. To address the limitations associated with manual inspection, this research endeavors to automate the inspection process using the YOLOv8 deep learning algorithm for real-time fault detection in PCBs. Specifically, we explore the effectiveness of two variants of the YOLOv8 architecture: YOLOv8 Small and YOLOv8 Nano. Through rigorous experimentation and evaluation of our dataset which was acquired from Peking University’s Human-Robot Interaction Lab, we aim to assess the suitability of these models for improving fault detection accuracy within the PCB manufacturing process. Our results reveal the remarkable capabilities of YOLOv8 Small models in accurately identifying and classifying PCB faults. The model achieved a precision of 98.7%, a recall of 99%, an accuracy of 98.6%, and an F1 score of 0.98. These findings highlight the potential of the YOLOv8 Small model to significantly improve the quality control processes in PCB manufacturing by providing a reliable and efficient solution for fault detection.

Keywords


Cite This Article

APA Style
Khan, R.U., Shah, F., Khan, A.A., Tahir, H. (2024). Advancing PCB quality control: harnessing yolov8 deep learning for real-time fault detection. Computers, Materials & Continua, 81(1), 345-367. https://doi.org/10.32604/cmc.2024.054439
Vancouver Style
Khan RU, Shah F, Khan AA, Tahir H. Advancing PCB quality control: harnessing yolov8 deep learning for real-time fault detection. Comput Mater Contin. 2024;81(1):345-367 https://doi.org/10.32604/cmc.2024.054439
IEEE Style
R. U. Khan, F. Shah, A. A. Khan, and H. Tahir, “Advancing PCB Quality Control: Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection,” Comput. Mater. Contin., vol. 81, no. 1, pp. 345-367, 2024. https://doi.org/10.32604/cmc.2024.054439



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 746

    View

  • 310

    Download

  • 0

    Like

Share Link