Open Access iconOpen Access

ARTICLE

crossmark

Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network

Fangfang Shan1,2,*, Mengyao Liu1,2, Menghan Zhang1,2, Zhenyu Wang1,2

1 College of Computer, Zhongyuan University of Technology, Zhengzhou, 450007, China
2 Henan Key Laboratory of Cyberspace Situation Awareness, Zhengzhou, 450001, China

* Corresponding Author: Fangfang Shan. Email: email

Computers, Materials & Continua 2024, 80(1), 1521-1542. https://doi.org/10.32604/cmc.2024.053937

Abstract

Social media has become increasingly significant in modern society, but it has also turned into a breeding ground for the propagation of misleading information, potentially causing a detrimental impact on public opinion and daily life. Compared to pure text content, multmodal content significantly increases the visibility and share ability of posts. This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection. To effectively address the critical challenge of accurately detecting fake news on social media, this paper proposes a fake news detection model based on cross-modal message aggregation and a gated fusion network (MAGF). MAGF first uses BERT to extract cumulative textual feature representations and word-level features, applies Faster Region-based Convolutional Neural Network (Faster R-CNN) to obtain image objects, and leverages ResNet-50 and Visual Geometry Group-19 (VGG-19) to obtain image region features and global features. The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation. The gated fusion network combines text and image region features to obtain adaptively aggregated features. The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to produce multimodal representations. Finally, these fused features are fed into a classifier for news categorization. Experiments were conducted on two public datasets, Twitter and Weibo. Results show that the proposed model achieves accuracy rates of 91.8% and 88.7% on the two datasets, respectively, significantly outperforming traditional unimodal and existing multimodal models.

Keywords


Cite This Article

APA Style
Shan, F., Liu, M., Zhang, M., Wang, Z. (2024). Fake news detection based on cross-modal message aggregation and gated fusion network. Computers, Materials & Continua, 80(1), 1521-1542. https://doi.org/10.32604/cmc.2024.053937
Vancouver Style
Shan F, Liu M, Zhang M, Wang Z. Fake news detection based on cross-modal message aggregation and gated fusion network. Comput Mater Contin. 2024;80(1):1521-1542 https://doi.org/10.32604/cmc.2024.053937
IEEE Style
F. Shan, M. Liu, M. Zhang, and Z. Wang, “Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network,” Comput. Mater. Contin., vol. 80, no. 1, pp. 1521-1542, 2024. https://doi.org/10.32604/cmc.2024.053937



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 386

    View

  • 168

    Download

  • 0

    Like

Share Link