Open Access iconOpen Access

ARTICLE

crossmark

Novel Fractal-Based Features for Low-Power Appliances in Non-Intrusive Load Monitoring

Anam Mughees1,2,*, Muhammad Kamran1,3

1 Department of Electrical Engineering, University of Engineering and Technology (UET), Lahore, 54890, Pakistan
2 Department of Electrical Engineering, Government College University, Faisalabad, 38000, Pakistan
3 Department of Electrical Engineering and Technology, Muhammad Nawaz Sharif University of Engineering & Technology (MNS UET), Multan, 60000, Pakistan

* Corresponding Author: Anam Mughees. Email: email

Computers, Materials & Continua 2024, 80(1), 507-526. https://doi.org/10.32604/cmc.2024.051820

Abstract

Non-intrusive load monitoring is a method that disaggregates the overall energy consumption of a building to estimate the electric power usage and operating status of each appliance individually. Prior studies have mostly concentrated on the identification of high-power appliances like HVAC systems while overlooking the existence of low-power appliances. Low-power consumer appliances have comparable power consumption patterns, which can complicate the detection task and can be mistaken as noise. This research tackles the problem of classification of low-power appliances and uses turn-on current transients to extract novel features and develop unique appliance signatures. A hybrid feature extraction method based on mono-fractal and multi-fractal analysis is proposed for identifying low-power appliances. Fractal dimension, Hurst exponent, multifractal spectrum and the Hölder exponents of switching current transient signals are extracted to develop various ‘turn-on’ appliance signatures for classification. Four classifiers, i.e., deep neural network, support vector machine, decision trees, and K-nearest neighbours have been optimized using Bayesian optimization and trained using the extracted features. The simulated results showed that the proposed method consistently outperforms state-of-the-art feature extraction methods across all optimized classifiers, achieving an accuracy of up to 96 % in classifying low-power appliances.

Keywords


Cite This Article

APA Style
Mughees, A., Kamran, M. (2024). Novel fractal-based features for low-power appliances in non-intrusive load monitoring. Computers, Materials & Continua, 80(1), 507-526. https://doi.org/10.32604/cmc.2024.051820
Vancouver Style
Mughees A, Kamran M. Novel fractal-based features for low-power appliances in non-intrusive load monitoring. Comput Mater Contin. 2024;80(1):507-526 https://doi.org/10.32604/cmc.2024.051820
IEEE Style
A. Mughees and M. Kamran, “Novel Fractal-Based Features for Low-Power Appliances in Non-Intrusive Load Monitoring,” Comput. Mater. Contin., vol. 80, no. 1, pp. 507-526, 2024. https://doi.org/10.32604/cmc.2024.051820



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 529

    View

  • 188

    Download

  • 0

    Like

Share Link