Open Access
ARTICLE
Personalized Lower Limb Gait Reconstruction Modeling Based on RFA-ProMP
College of Electrical Engineering, Guizhou University, Guiyang, 550025, China
* Corresponding Author: Zhiqin He. Email:
(This article belongs to the Special Issue: Intelligent Manufacturing, Robotics and Control Engineering)
Computers, Materials & Continua 2024, 80(1), 1441-1456. https://doi.org/10.32604/cmc.2024.051551
Received 08 March 2024; Accepted 07 June 2024; Issue published 18 July 2024
Abstract
Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients. The article utilizes the random forest algorithm to construct a gait parameter model, which maps the relationship between parameters such as height, weight, age, gender, and gait speed, achieving prediction of key points on the gait curve. To enhance prediction accuracy, an attention mechanism is introduced into the algorithm to focus more on the main features. Meanwhile, to ensure high similarity between the reconstructed gait curve and the normal one, probabilistic motion primitives (ProMP) are used to learn the probability distribution of normal gait data and construct a gait trajectory model. Finally, using the specified step speed as input, select a reference gait trajectory from the learned trajectory, and reconstruct the curve of the reference trajectory using the gait key points predicted by the parameter model to obtain the final curve. Simulation results demonstrate that the method proposed in this paper achieves 98% and 96% curve correlations when generating personalized lower limb gait curves for different patients, respectively, indicating its suitability for such tasks.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.