Open Access iconOpen Access

ARTICLE

crossmark

Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network

Tingting Su1, Jia Wang1,*, Wei Hu2,*, Gaoqiang Dong1, Jeon Gwanggil3

1 School of Computer Science and Technology, Xinjiang University, Urumqi, 830046, China
2 School of Cyber Science and Engineering, Jinling Institute of Technology City, Nanjing, 210000, China
3 College of Information Technology, Incheon National University, Incheon, 22012, Korea

* Corresponding Authors: Jia Wang. Email: email; Wei Hu. Email: email

(This article belongs to the Special Issue: AI and Data Security for the Industrial Internet)

Computers, Materials & Continua 2024, 79(3), 4433-4448. https://doi.org/10.32604/cmc.2024.051535

Abstract

Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation, industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is high-dimensional and complex. This data not only increases the computational burden of model training but also makes information extraction more difficult. To address these issues, this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection. To fully utilize the multi-scale information in network traffic, a Multi-scale Dilated feature extraction (MD) block is introduced. This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field. The proposed Max-feature-map Residual with Dual-channel pooling (MRD) block integrates the maximum feature map with the residual block. This module ensures the model focuses on key information, thereby optimizing computational efficiency and reducing unnecessary information redundancy. Experimental results show that compared to the latest methods, the proposed abnormal traffic detection model improves accuracy by about 2%.

Keywords


Cite This Article

APA Style
Su, T., Wang, J., Hu, W., Dong, G., Gwanggil, J. (2024). Abnormal traffic detection for internet of things based on an improved residual network. Computers, Materials & Continua, 79(3), 4433-4448. https://doi.org/10.32604/cmc.2024.051535
Vancouver Style
Su T, Wang J, Hu W, Dong G, Gwanggil J. Abnormal traffic detection for internet of things based on an improved residual network. Comput Mater Contin. 2024;79(3):4433-4448 https://doi.org/10.32604/cmc.2024.051535
IEEE Style
T. Su, J. Wang, W. Hu, G. Dong, and J. Gwanggil, “Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network,” Comput. Mater. Contin., vol. 79, no. 3, pp. 4433-4448, 2024. https://doi.org/10.32604/cmc.2024.051535



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 569

    View

  • 220

    Download

  • 0

    Like

Share Link