Open Access iconOpen Access

ARTICLE

crossmark

Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling

by Muchang Rao, Hang Qin*

School of Computer Science, Yangtze University, Jingzhou, 434000, China

* Corresponding Author: Hang Qin. Email: email

(This article belongs to the Special Issue: Multi-Service and Resource Management in Intelligent Edge-Cloud Platform)

Computers, Materials & Continua 2024, 79(2), 2647-2672. https://doi.org/10.32604/cmc.2024.050380

Abstract

More devices in the Intelligent Internet of Things (AIoT) result in an increased number of tasks that require low latency and real-time responsiveness, leading to an increased demand for computational resources. Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension. However, the effective allocation of resources for task execution within fog environments, characterized by limitations and heterogeneity in computational resources, remains a formidable challenge. To tackle this challenge, in this study, we integrate fog computing and cloud computing. We begin by establishing a fog-cloud environment framework, followed by the formulation of a mathematical model for task scheduling. Lastly, we introduce an enhanced hybrid Equilibrium Optimizer (EHEO) tailored for AIoT task scheduling. The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines. The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms, encompassing metrics like makespan, total energy consumption, success rate, and average waiting time. Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics. Notably, in the most favorable conditions, EHEO significantly diminishes both the makespan and energy consumption by approximately 50% and 35.5%, respectively, compared to the second-best performing approach, which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks.

Keywords


Cite This Article

APA Style
Rao, M., Qin, H. (2024). Enhanced hybrid equilibrium strategy in fog-cloud computing networks with optimal task scheduling. Computers, Materials & Continua, 79(2), 2647-2672. https://doi.org/10.32604/cmc.2024.050380
Vancouver Style
Rao M, Qin H. Enhanced hybrid equilibrium strategy in fog-cloud computing networks with optimal task scheduling. Comput Mater Contin. 2024;79(2):2647-2672 https://doi.org/10.32604/cmc.2024.050380
IEEE Style
M. Rao and H. Qin, “Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling,” Comput. Mater. Contin., vol. 79, no. 2, pp. 2647-2672, 2024. https://doi.org/10.32604/cmc.2024.050380



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 642

    View

  • 279

    Download

  • 1

    Like

Share Link