Open Access iconOpen Access

ARTICLE

crossmark

Hyperspectral Image Based Interpretable Feature Clustering Algorithm

Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

1 School of Information Engineering, Yulin University, Yulin, 719000, China
2 Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, 710119, China

* Corresponding Author: Yaming Kang. Email: email

(This article belongs to the Special Issue: Advances and Applications in Signal, Image and Video Processing)

Computers, Materials & Continua 2024, 79(2), 2151-2168. https://doi.org/10.32604/cmc.2024.049360

Abstract

Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective. It commences with a simulated perception process, proposing an interpretable band selection algorithm to reduce data dimensions. Following this, a multi-dimensional clustering algorithm, rooted in fuzzy and kernel clustering, is developed to highlight intra-class similarities and inter-class differences. An optimized P system is then introduced to enhance computational efficiency. This system coordinates all cells within a mapping space to compute optimal cluster centers, facilitating parallel computation. This approach diminishes sensitivity to initial cluster centers and augments global search capabilities, thus preventing entrapment in local minima and enhancing clustering performance. Experiments conducted on 300 datasets, comprising both real and simulated data. The results show that the average accuracy (ACC) of the proposed algorithm is 0.86 and the combination measure (CM) is 0.81.

Keywords


Cite This Article

APA Style
Kang, Y., Ye, P., Bai, Y., Qiu, S. (2024). Hyperspectral image based interpretable feature clustering algorithm. Computers, Materials & Continua, 79(2), 2151-2168. https://doi.org/10.32604/cmc.2024.049360
Vancouver Style
Kang Y, Ye P, Bai Y, Qiu S. Hyperspectral image based interpretable feature clustering algorithm. Comput Mater Contin. 2024;79(2):2151-2168 https://doi.org/10.32604/cmc.2024.049360
IEEE Style
Y. Kang, P. Ye, Y. Bai, and S. Qiu, “Hyperspectral Image Based Interpretable Feature Clustering Algorithm,” Comput. Mater. Contin., vol. 79, no. 2, pp. 2151-2168, 2024. https://doi.org/10.32604/cmc.2024.049360



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 592

    View

  • 249

    Download

  • 0

    Like

Share Link