Open Access iconOpen Access

ARTICLE

crossmark

Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections

by Dmitry Gura1,2, Bo Dong3,*, Duaa Mehiar4, Nidal Al Said5

1 Department of Cadastre and Geoengineering, Kuban State Technological University, Krasnodar, 350072, Russian Federation
2 Department of Geodesy, Kuban State Agrarian University, Krasnodar, 350072, Russian Federation
3 School of Innovation and Entrepreneurship, Liaoning University, Liaoning, 110031, China
4 Department of IT, Middle East University, Amman, 11831, Jordan
5 College of Mass Communication, Ajman University, P.O Box 346, Ajman, United Arab Emirates

* Corresponding Author: Bo Dong. Email: email

Computers, Materials & Continua 2024, 79(2), 1995-2014. https://doi.org/10.32604/cmc.2024.048238

Abstract

The motivation for this study is that the quality of deep fakes is constantly improving, which leads to the need to develop new methods for their detection. The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection, which is then used as input to the CNN. The customized Convolutional Neural Network method is the date augmented-based CNN model to generate ‘fake data’ or ‘fake images’. This study was carried out using Python and its libraries. We used 242 films from the dataset gathered by the Deep Fake Detection Challenge, of which 199 were made up and the remaining 53 were real. Ten seconds were allotted for each video. There were 318 videos used in all, 199 of which were fake and 119 of which were real. Our proposed method achieved a testing accuracy of 91.47%, loss of 0.342, and AUC score of 0.92, outperforming two alternative approaches, CNN and MLP-CNN. Furthermore, our method succeeded in greater accuracy than contemporary models such as XceptionNet, Meso-4, EfficientNet-BO, MesoInception-4, VGG-16, and DST-Net. The novelty of this investigation is the development of a new Convolutional Neural Network (CNN) learning model that can accurately detect deep fake face photos.

Keywords


Cite This Article

APA Style
Gura, D., Dong, B., Mehiar, D., Said, N.A. (2024). Customized convolutional neural network for accurate detection of deep fake images in video collections. Computers, Materials & Continua, 79(2), 1995-2014. https://doi.org/10.32604/cmc.2024.048238
Vancouver Style
Gura D, Dong B, Mehiar D, Said NA. Customized convolutional neural network for accurate detection of deep fake images in video collections. Comput Mater Contin. 2024;79(2):1995-2014 https://doi.org/10.32604/cmc.2024.048238
IEEE Style
D. Gura, B. Dong, D. Mehiar, and N. A. Said, “Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections,” Comput. Mater. Contin., vol. 79, no. 2, pp. 1995-2014, 2024. https://doi.org/10.32604/cmc.2024.048238



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 778

    View

  • 355

    Download

  • 0

    Like

Share Link