Open Access iconOpen Access

ARTICLE

Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks

by Yunchang Liu1,*, Fei Wan1, Chengwu Liang2

1 School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan, 467036, China
2 School of Electrical and Control Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China

* Corresponding Author: Yunchang Liu. Email: email

Computers, Materials & Continua 2024, 78(3), 4343-4361. https://doi.org/10.32604/cmc.2024.047211

Abstract

Traffic flow prediction plays a key role in the construction of intelligent transportation system. However, due to its complex spatio-temporal dependence and its uncertainty, the research becomes very challenging. Most of the existing studies are based on graph neural networks that model traffic flow graphs and try to use fixed graph structure to deal with the relationship between nodes. However, due to the time-varying spatial correlation of the traffic network, there is no fixed node relationship, and these methods cannot effectively integrate the temporal and spatial features. This paper proposes a novel temporal-spatial dynamic graph convolutional network (TSADGCN). The dynamic time warping algorithm (DTW) is introduced to calculate the similarity of traffic flow sequence among network nodes in the time dimension, and the spatiotemporal graph of traffic flow is constructed to capture the spatiotemporal characteristics and dependencies of traffic flow. By combining graph attention network and time attention network, a spatiotemporal convolution block is constructed to capture spatiotemporal characteristics of traffic data. Experiments on open data sets PEMSD4 and PEMSD8 show that TSADGCN has higher prediction accuracy than well-known traffic flow prediction algorithms.

Keywords


Cite This Article

APA Style
Liu, Y., Wan, F., Liang, C. (2024). Predicting traffic flow using dynamic spatial-temporal graph convolution networks. Computers, Materials & Continua, 78(3), 4343-4361. https://doi.org/10.32604/cmc.2024.047211
Vancouver Style
Liu Y, Wan F, Liang C. Predicting traffic flow using dynamic spatial-temporal graph convolution networks. Comput Mater Contin. 2024;78(3):4343-4361 https://doi.org/10.32604/cmc.2024.047211
IEEE Style
Y. Liu, F. Wan, and C. Liang, “Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks,” Comput. Mater. Contin., vol. 78, no. 3, pp. 4343-4361, 2024. https://doi.org/10.32604/cmc.2024.047211



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 555

    View

  • 314

    Download

  • 0

    Like

Share Link