Open Access
ARTICLE
An Innovative Approach Using TKN-Cryptology for Identifying the Replay Assault
1 Department of Computer Science, Alhamd Islamic University, Islamabad, 44000, Pakistan
2 Department of Computer Science and Technology, University of Science and Technology Beijing, Beijing, 100083, China
3 Department of Computer Science, National University of Technology, Islamabad, 44000, Pakistan
4 Department of Electrical Engineering, National University of Technology, Islamabad, 44000, Pakistan
5 Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, 13713, Saudi Arabia
6 Department of Computer Science, Faculty of Computer and Information Systems, Islamic University of Madinah, Medinah, 42351, Saudi Arabia
7 Department of Information Technology, College of Computer Sciences and Information Technology College, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
8 Department of Natural and Applied Sciences, Faculty of Community College, Majmaah University, Majmaah, 11952, Saudi Arabia
* Corresponding Author: Ali Arshad. Email:
Computers, Materials & Continua 2024, 78(1), 589-616. https://doi.org/10.32604/cmc.2023.042386
Received 28 May 2023; Accepted 08 November 2023; Issue published 30 January 2024
Abstract
Various organizations store data online rather than on physical servers. As the number of user’s data stored in cloud servers increases, the attack rate to access data from cloud servers also increases. Different researchers worked on different algorithms to protect cloud data from replay attacks. None of the papers used a technique that simultaneously detects a full-message and partial-message replay attack. This study presents the development of a TKN (Text, Key and Name) cryptographic algorithm aimed at protecting data from replay attacks. The program employs distinct ways to encrypt plain text [P], a user-defined Key [K], and a Secret Code [N]. The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm, and the length of the cipher text obtained is twice the length of the original text. In the scenario that an attacker executes a replay attack on the cloud server, engages in cryptanalysis, or manipulates any data, it will result in automated modification of all associated values inside the backend. This mechanism has the benefit of enhancing the detectability of replay attacks. Nevertheless, the attacker cannot access data not included in any of the papers, regardless of how effective the attack strategy is. At the end of paper, the proposed algorithm’s novelty will be compared with different algorithms, and it will be discussed how far the proposed algorithm is better than all other algorithms.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.