Open Access iconOpen Access

ARTICLE

crossmark

Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5

by Ananthakrishnan Balasundaram1,*, Anshuman Mohanty2, Ayesha Shaik1, Krishnadoss Pradeep2, Kedalu Poornachary Vijayakumar2, Muthu Subash Kavitha3

1 Centre for Cyber Physical Systems, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, 600127, India
2 School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, 600127, India
3 School of Information and Data Sciences, Nagasaki University, Nagasaki, 8528521, Japan

* Corresponding Author: Ananthakrishnan Balasundaram. Email: email

(This article belongs to the Special Issue: Deep Learning based Object Detection and Tracking in Videos)

Computers, Materials & Continua 2023, 77(3), 2751-2769. https://doi.org/10.32604/cmc.2023.044374

Abstract

Automated object detection has received the most attention over the years. Use cases ranging from autonomous driving applications to military surveillance systems, require robust detection of objects in different illumination conditions. State-of-the-art object detectors tend to fare well in object detection during daytime conditions. However, their performance is severely hampered in night light conditions due to poor illumination. To address this challenge, the manuscript proposes an improved YOLOv5-based object detection framework for effective detection in unevenly illuminated nighttime conditions. Firstly, the preprocessing strategies involve using the Zero-DCE++ approach to enhance lowlight images. It is followed by optimizing the existing YOLOv5 architecture by integrating the Convolutional Block Attention Module (CBAM) in the backbone network to boost model learning capability and Depthwise Convolutional module (DWConv) in the neck network for efficient compression of network parameters. The Night Object Detection (NOD) and Exclusively Dark (ExDARK) dataset has been used for this work. The proposed framework detects classes like humans, bicycles, and cars. Experiments demonstrate that the proposed architecture achieved a higher Mean Average Precision (mAP) along with a reduction in model size and total parameters, respectively. The proposed model is lighter by 11.24% in terms of model size and 12.38% in terms of parameters when compared to baseline YOLOv5.

Keywords


Cite This Article

APA Style
Balasundaram, A., Mohanty, A., Shaik, A., Pradeep, K., Vijayakumar, K.P. et al. (2023). Zero-dce++ inspired object detection in less illuminated environment using improved yolov5. Computers, Materials & Continua, 77(3), 2751-2769. https://doi.org/10.32604/cmc.2023.044374
Vancouver Style
Balasundaram A, Mohanty A, Shaik A, Pradeep K, Vijayakumar KP, Kavitha MS. Zero-dce++ inspired object detection in less illuminated environment using improved yolov5. Comput Mater Contin. 2023;77(3):2751-2769 https://doi.org/10.32604/cmc.2023.044374
IEEE Style
A. Balasundaram, A. Mohanty, A. Shaik, K. Pradeep, K. P. Vijayakumar, and M. S. Kavitha, “Zero-DCE++ Inspired Object Detection in Less Illuminated Environment Using Improved YOLOv5,” Comput. Mater. Contin., vol. 77, no. 3, pp. 2751-2769, 2023. https://doi.org/10.32604/cmc.2023.044374



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1269

    View

  • 463

    Download

  • 0

    Like

Share Link