Open Access iconOpen Access

ARTICLE

crossmark

Royal Crown Shaped Polarization Insensitive Perfect Metamaterial Absorber for C-, X-, and Ku-Band Applications

Md. Salah Uddin Afsar1, Mohammad Rashed Iqbal Faruque1,*, Sabirin Abdullah1, Mohammad Tariqul Islam2

1 Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Selangor D. E., Malaysia
2 Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi, 43600, Selangor D. E., Malaysia

* Corresponding Author: Mohammad Rashed Iqbal Faruque. Email: email

(This article belongs to the Special Issue: Recent Developments in Antennas and Wireless Propagation)

Computers, Materials & Continua 2023, 76(1), 455-469. https://doi.org/10.32604/cmc.2023.036655

Abstract

This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic simulator has been deployed for numerical simulation of the unit cell in the frequency range of 4 to 14 GHz. In the TE mode, the offered MA structure demonstrated three different absorption peaks at 6.85 GHz (C-band), 8.87 GHz (X-band), and 12.03 GHz (Ku-band), with 96.82%, 99.24%, and 99.43% absorptivity, respectively. The electric field, magnetic field, and surface current distribution were analysed using Maxwell’s-Curl equations, whereas the angle sensitivity was investigated to comprehend the absorption mechanism of the proposed absorber. The numerical results were verified using the Ansys HFSS (high-frequency structure simulator) and ADS (advanced design system) for equivalent circuit models. Moreover, the proposed MA is polarisation and incident angle independent. Hence, the application of this MA can be extended to a great extent, including airborne radar applications, defence, and stealth-coating technology.

Keywords


Cite This Article

APA Style
Afsar, M.S.U., Faruque, M.R.I., Abdullah, S., Islam, M.T. (2023). Royal crown shaped polarization insensitive perfect metamaterial absorber for C-, X-, and ku-band applications. Computers, Materials & Continua, 76(1), 455-469. https://doi.org/10.32604/cmc.2023.036655
Vancouver Style
Afsar MSU, Faruque MRI, Abdullah S, Islam MT. Royal crown shaped polarization insensitive perfect metamaterial absorber for C-, X-, and ku-band applications. Comput Mater Contin. 2023;76(1):455-469 https://doi.org/10.32604/cmc.2023.036655
IEEE Style
M.S.U. Afsar, M.R.I. Faruque, S. Abdullah, and M.T. Islam, “Royal Crown Shaped Polarization Insensitive Perfect Metamaterial Absorber for C-, X-, and Ku-Band Applications,” Comput. Mater. Contin., vol. 76, no. 1, pp. 455-469, 2023. https://doi.org/10.32604/cmc.2023.036655



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 784

    View

  • 516

    Download

  • 0

    Like

Share Link