Open Access
ARTICLE
OffSig-SinGAN: A Deep Learning-Based Image Augmentation Model for Offline Signature Verification
1 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, 46400, Malaysia
2 Department of Computer Science, Bahauddin Zakariya University, Multan, 60000, Pakistan
3 Department of Computer Science, Sukkur Institute of Business Administration University, Sukkur, 65200, Pakistan
* Corresponding Author: Rodina Ahmad. Email:
Computers, Materials & Continua 2023, 76(1), 1267-1289. https://doi.org/10.32604/cmc.2023.035063
Received 05 August 2022; Accepted 29 January 2023; Issue published 08 June 2023
Abstract
Offline signature verification (OfSV) is essential in preventing the falsification of documents. Deep learning (DL) based OfSVs require a high number of signature images to attain acceptable performance. However, a limited number of signature samples are available to train these models in a real-world scenario. Several researchers have proposed models to augment new signature images by applying various transformations. Others, on the other hand, have used human neuromotor and cognitive-inspired augmentation models to address the demand for more signature samples. Hence, augmenting a sufficient number of signatures with variations is still a challenging task. This study proposed OffSig-SinGAN: a deep learning-based image augmentation model to address the limited number of signatures problem on offline signature verification. The proposed model is capable of augmenting better quality signatures with diversity from a single signature image only. It is empirically evaluated on widely used public datasets; GPDSsyntheticSignature. The quality of augmented signature images is assessed using four metrics like pixel-by-pixel difference, peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and frechet inception distance (FID). Furthermore, various experiments were organised to evaluate the proposed image augmentation model’s performance on selected DL-based OfSV systems and to prove whether it helped to improve the verification accuracy rate. Experiment results showed that the proposed augmentation model performed better on the GPDSsyntheticSignature dataset than other augmentation methods. The improved verification accuracy rate of the selected DL-based OfSV system proved the effectiveness of the proposed augmentation model.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.