Open Access iconOpen Access

ARTICLE

crossmark

Temperature-Triggered Hardware Trojan Based Algebraic Fault Analysis of SKINNY-64-64 Lightweight Block Cipher

Lei Zhu, Jinyue Gong, Liang Dong*, Cong Zhang

Communication and Electronics Engineering Institute, Qiqihar University, Qiqihar, 161006, China

* Corresponding Author: Liang Dong. Email: email

Computers, Materials & Continua 2023, 75(3), 5521-5537. https://doi.org/10.32604/cmc.2023.037336

Abstract

SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length, and it is mainly used on the Internet of Things (IoT). Currently, faults can be injected into cryptographic devices by attackers in a variety of ways, but it is still difficult to achieve a precisely located fault attacks at a low cost, whereas a Hardware Trojan (HT) can realize this. Temperature, as a physical quantity incidental to the operation of a cryptographic device, is easily overlooked. In this paper, a temperature-triggered HT (THT) is designed, which, when activated, causes a specific bit of the intermediate state of the SKINNY-64-64 to be flipped. Further, in this paper, a THT-based algebraic fault analysis (THT-AFA) method is proposed. To demonstrate the effectiveness of the method, experiments on algebraic fault analysis (AFA) and THT-AFA have been carried out on SKINNY-64-64. In the THT-AFA for SKINNY-64-64, it is only required to activate the THT 3 times to obtain the master key with a 100% success rate, and the average time for the attack is 64.57 s. However, when performing AFA on this cipher, we provide a relationship between the number of different faults and the residual entropy of the key. In comparison, our proposed THT-AFA method has better performance in terms of attack efficiency. To the best of our knowledge, this is the first HT attack on SKINNY-64-64.

Keywords


Cite This Article

L. Zhu, J. Gong, L. Dong and C. Zhang, "Temperature-triggered hardware trojan based algebraic fault analysis of skinny-64-64 lightweight block cipher," Computers, Materials & Continua, vol. 75, no.3, pp. 5521–5537, 2023. https://doi.org/10.32604/cmc.2023.037336



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 538

    View

  • 341

    Download

  • 0

    Like

Share Link