Open Access iconOpen Access

ARTICLE

crossmark

Probability Based Regression Analysis for the Prediction of Cardiovascular Diseases

Wasif Akbar1, Adbul Mannan2, Qaisar Shaheen3,*, Mohammad Hijji4, Muhammad Anwar5, Muhammad Ayaz6

1 Department of Computer Science, NFC Institute of Engineering and Technology, Multan, Pakistan
2 Faculty of Computer Science & Information Technology, University of Malaya, Kuala Lumpur, Malaysia
3 Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Punjab, Pakistan
4 Faculty of Computers and Information Technology, University of Tabuk, Tabuk, 47512, Saudi Arabia
5 Department of Information Sciences, Division of Science and Technology, University of Education, Lahore, Pakistan
6 Sensor Networks and Cellular Systems (SNCS) research center, University of Tabuk, Tabuk, 47512, Saudi Arabia

* Corresponding Author: Qaisar Shaheen. Email: email

Computers, Materials & Continua 2023, 75(3), 6269-6286. https://doi.org/10.32604/cmc.2023.036141

Abstract

Machine Learning (ML) has changed clinical diagnostic procedures drastically. Especially in Cardiovascular Diseases (CVD), the use of ML is indispensable to reducing human errors. Enormous studies focused on disease prediction but depending on multiple parameters, further investigations are required to upgrade the clinical procedures. Multi-layered implementation of ML also called Deep Learning (DL) has unfolded new horizons in the field of clinical diagnostics. DL formulates reliable accuracy with big datasets but the reverse is the case with small datasets. This paper proposed a novel method that deals with the issue of less data dimensionality. Inspired by the regression analysis, the proposed method classifies the data by going through three different stages. In the first stage, feature representation is converted into probabilities using multiple regression techniques, the second stage grasps the probability conclusions from the previous stage and the third stage fabricates the final classifications. Extensive experiments were carried out on the Cleveland heart disease dataset. The results show significant improvement in classification accuracy. It is evident from the comparative results of the paper that the prevailing statistical ML methods are no more stagnant disease prediction techniques in demand in the future.

Keywords


Cite This Article

APA Style
Akbar, W., Mannan, A., Shaheen, Q., Hijji, M., Anwar, M. et al. (2023). Probability based regression analysis for the prediction of cardiovascular diseases. Computers, Materials & Continua, 75(3), 6269-6286. https://doi.org/10.32604/cmc.2023.036141
Vancouver Style
Akbar W, Mannan A, Shaheen Q, Hijji M, Anwar M, Ayaz M. Probability based regression analysis for the prediction of cardiovascular diseases. Comput Mater Contin. 2023;75(3):6269-6286 https://doi.org/10.32604/cmc.2023.036141
IEEE Style
W. Akbar, A. Mannan, Q. Shaheen, M. Hijji, M. Anwar, and M. Ayaz, “Probability Based Regression Analysis for the Prediction of Cardiovascular Diseases,” Comput. Mater. Contin., vol. 75, no. 3, pp. 6269-6286, 2023. https://doi.org/10.32604/cmc.2023.036141



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 779

    View

  • 433

    Download

  • 0

    Like

Share Link