Open Access iconOpen Access

ARTICLE

crossmark

Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals

Srikanth Cherukuvada, R. Kayalvizhi*

Department of Networking and Communications, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India

* Corresponding Author: R. Kayalvizhi. Email: email

Computers, Materials & Continua 2023, 75(2), 4101-4118. https://doi.org/10.32604/cmc.2023.036207

Abstract

The term Epilepsy refers to a most commonly occurring brain disorder after a migraine. Early identification of incoming seizures significantly impacts the lives of people with Epilepsy. Automated detection of epileptic seizures (ES) has dramatically improved the life quality of the patients. Recent Electroencephalogram (EEG) related seizure detection mechanisms encountered several difficulties in real-time. The EEGs are the non-stationary signal, and seizure patterns would change with patients and recording sessions. Further, EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs. Artificial intelligence (AI) methods in the domain of ES analysis use traditional deep learning (DL), and machine learning (ML) approaches. This article introduces an Oppositional Aquila Optimizer-based Feature Selection with Deep Belief Network for Epileptic Seizure Detection (OAOFS-DBNECD) technique using EEG signals. The primary aim of the presented OAOFS-DBNECD system is to categorize and classify the presence of ESs. The suggested OAOFS-DBNECD technique transforms the EEG signals into .csv format at the initial stage. Next, the OAOFS technique selects an optimal subset of features using the pre-processed data. For seizure classification, the presented OAOFS-DBNECD technique applies Artificial Ecosystem Optimizer (AEO) with a deep belief network (DBN) model. An extensive range of simulations was performed on the benchmark dataset to ensure the enhanced performance of the presented OAOFS-DBNECD algorithm. The comparison study shows the significant outcomes of the OAOFS-DBNECD approach over other methodologies. In addition, the result of the suggested approach has been evaluated using the CHB-MIT database, and the findings demonstrate accuracy of 97.81%. These findings confirmed the best seizure categorization accuracy on the EEG data considered.

Keywords


Cite This Article

APA Style
Cherukuvada, S., Kayalvizhi, R. (2023). Feature selection with deep belief network for epileptic seizure detection on EEG signals. Computers, Materials & Continua, 75(2), 4101-4118. https://doi.org/10.32604/cmc.2023.036207
Vancouver Style
Cherukuvada S, Kayalvizhi R. Feature selection with deep belief network for epileptic seizure detection on EEG signals. Comput Mater Contin. 2023;75(2):4101-4118 https://doi.org/10.32604/cmc.2023.036207
IEEE Style
S. Cherukuvada and R. Kayalvizhi, “Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals,” Comput. Mater. Contin., vol. 75, no. 2, pp. 4101-4118, 2023. https://doi.org/10.32604/cmc.2023.036207



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1238

    View

  • 606

    Download

  • 0

    Like

Share Link