Open Access iconOpen Access

ARTICLE

crossmark

Deep Learning for Image Segmentation: A Focus on Medical Imaging

Ali F. Khalifa1, Eman Badr1,2,*

1 Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt
2 Zewail City of Science and Technology, Giza, 12578, Egypt

* Corresponding Author: Eman Badr. Email: email

Computers, Materials & Continua 2023, 75(1), 1995-2024. https://doi.org/10.32604/cmc.2023.035888

Abstract

Image segmentation is crucial for various research areas. Many computer vision applications depend on segmenting images to understand the scene, such as autonomous driving, surveillance systems, robotics, and medical imaging. With the recent advances in deep learning (DL) and its confounding results in image segmentation, more attention has been drawn to its use in medical image segmentation. This article introduces a survey of the state-of-the-art deep convolution neural network (CNN) models and mechanisms utilized in image segmentation. First, segmentation models are categorized based on their model architecture and primary working principle. Then, CNN categories are described, and various models are discussed within each category. Compared with other existing surveys, several applications with multiple architectural adaptations are discussed within each category. A comparative summary is included to give the reader insights into utilized architectures in different applications and datasets. This study focuses on medical image segmentation applications, where the most widely used architectures are illustrated, and other promising models are suggested that have proven their success in different domains. Finally, the present work discusses current limitations and solutions along with future trends in the field.

Keywords


Cite This Article

APA Style
Khalifa, A.F., Badr, E. (2023). Deep learning for image segmentation: A focus on medical imaging. Computers, Materials & Continua, 75(1), 1995-2024. https://doi.org/10.32604/cmc.2023.035888
Vancouver Style
Khalifa AF, Badr E. Deep learning for image segmentation: A focus on medical imaging. Comput Mater Contin. 2023;75(1):1995-2024 https://doi.org/10.32604/cmc.2023.035888
IEEE Style
A.F. Khalifa and E. Badr, “Deep Learning for Image Segmentation: A Focus on Medical Imaging,” Comput. Mater. Contin., vol. 75, no. 1, pp. 1995-2024, 2023. https://doi.org/10.32604/cmc.2023.035888



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2328

    View

  • 748

    Download

  • 0

    Like

Share Link