Open Access
ARTICLE
Application of Physical Unclonable Function for Lightweight Authentication in Internet of Things
1 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
2 Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
3 Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
4 Department of Software Engineering, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
5 Department of Computer Science, Texas Tech University, Lubbock, USA
* Corresponding Author: Sajjad Hussain Chauhdary. Email:
Computers, Materials & Continua 2023, 75(1), 1901-1918. https://doi.org/10.32604/cmc.2023.028777
Received 17 February 2022; Accepted 07 September 2022; Issue published 06 February 2023
Abstract
IoT devices rely on authentication mechanisms to render secure message exchange. During data transmission, scalability, data integrity, and processing time have been considered challenging aspects for a system constituted by IoT devices. The application of physical unclonable functions (PUFs) ensures secure data transmission among the internet of things (IoT) devices in a simplified network with an efficient time-stamped agreement. This paper proposes a secure, lightweight, cost-efficient reinforcement machine learning framework (SLCR-MLF) to achieve decentralization and security, thus enabling scalability, data integrity, and optimized processing time in IoT devices. PUF has been integrated into SLCR-MLF to improve the security of the cluster head node in the IoT platform during transmission by providing the authentication service for device-to-device communication. An IoT network gathers information of interest from multiple cluster members selected by the proposed framework. In addition, the software-defined secured (SDS) technique is integrated with SLCR-MLF to improve data integrity and optimize processing time in the IoT platform. Simulation analysis shows that the proposed framework outperforms conventional methods regarding the network’s lifetime, energy, secured data retrieval rate, and performance ratio. By enabling the proposed framework, number of residual nodes is reduced to 16%, energy consumption is reduced by up to 50%, almost 30% improvement in data retrieval rate, and network lifetime is improved by up to 1000 msec.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.