Open Access
ARTICLE
Automated Autism Spectral Disorder Classification Using Optimal Machine Learning Model
1 Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
2 Department of Information Systems, College of Computer Science, Center of Artificial Intelligence and Unit of Cybersecurity, King Khalid University, Abha, Saudi Arabia
3 Department of Information Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia
4 Department of Computer Sciences, College of Computing and Information System, Umm Al-Qura University, Saudi Arabia
5 Department of Computer Science, College of Computer, Qassim University, Saudi Arabia
6 Department of Computer Science, Faculty of Computers and Information Technology, Future University in Egypt, New Cairo, 11835, Egypt
7 Department of Computer Science, College of Sciences and Humanities-Aflaj, Prince Sattam bin Abdulaziz University, Saudi Arabia
* Corresponding Author: Mesfer Al Duhayyim. Email:
Computers, Materials & Continua 2023, 74(3), 5251-5265. https://doi.org/10.32604/cmc.2023.032729
Received 27 May 2022; Accepted 29 June 2022; Issue published 28 December 2022
Abstract
Autism Spectrum Disorder (ASD) refers to a neuro-disorder where an individual has long-lasting effects on communication and interaction with others. Advanced information technology which employs artificial intelligence (AI) model has assisted in early identify ASD by using pattern detection. Recent advances of AI models assist in the automated identification and classification of ASD, which helps to reduce the severity of the disease. This study introduces an automated ASD classification using owl search algorithm with machine learning (ASDC-OSAML) model. The proposed ASDC-OSAML model majorly focuses on the identification and classification of ASD. To attain this, the presented ASDC-OSAML model follows min-max normalization approach as a pre-processing stage. Next, the owl search algorithm (OSA)-based feature selection (OSA-FS) model is used to derive feature subsets. Then, beetle swarm antenna search (BSAS) algorithm with Iterative Dichotomiser 3 (ID3) classification method was implied for ASD detection and classification. The design of BSAS algorithm helps to determine the parameter values of the ID3 classifier. The performance analysis of the ASDC-OSAML model is performed using benchmark dataset. An extensive comparison study highlighted the supremacy of the ASDC-OSAML model over recent state of art approaches.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.