Home / Journals / CMC / Vol.74, No.3, 2023
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A GDPR Compliant Approach to Assign Risk Levels to Privacy Policies

    Abdullah R. Alshamsan1, Shafique A. Chaudhry1,2,*
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4631-4647, 2023, DOI:10.32604/cmc.2023.034039
    Abstract Data privacy laws require service providers to inform their customers on how user data is gathered, used, protected, and shared. The General Data Protection Regulation (GDPR) is a legal framework that provides guidelines for collecting and processing personal information from individuals. Service providers use privacy policies to outline the ways an organization captures, retains, analyzes, and shares customers’ data with other parties. These policies are complex and written using legal jargon; therefore, users rarely read them before accepting them. There exist a number of approaches to automating the task of summarizing privacy policies and assigning risk levels. Most of the… More >

  • Open AccessOpen Access

    ARTICLE

    MI-STEG: A Medical Image Steganalysis Framework Based on Ensemble Deep Learning

    Rukiye Karakis1,2,*
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4649-4666, 2023, DOI:10.32604/cmc.2023.035881
    Abstract Medical image steganography aims to increase data security by concealing patient-personal information as well as diagnostic and therapeutic data in the spatial or frequency domain of radiological images. On the other hand, the discipline of image steganalysis generally provides a classification based on whether an image has hidden data or not. Inspired by previous studies on image steganalysis, this study proposes a deep ensemble learning model for medical image steganalysis to detect malicious hidden data in medical images and develop medical image steganography methods aimed at securing personal information. With this purpose in mind, a dataset containing brain Magnetic Resonance… More >

  • Open AccessOpen Access

    ARTICLE

    CLGA Net: Cross Layer Gated Attention Network for Image Dehazing

    Shengchun Wang1, Baoxuan Huang1, Tsz Ho Wong2, Jingui Huang1,*, Hong Deng1
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4667-4684, 2023, DOI:10.32604/cmc.2023.031444
    Abstract In this paper, we propose an end-to-end cross-layer gated attention network (CLGA-Net) to directly restore fog-free images. Compared with the previous dehazing network, the dehazing model presented in this paper uses the smooth cavity convolution and local residual module as the feature extractor, combined with the channel attention mechanism, to better extract the restored features. A large amount of experimental data proves that the defogging model proposed in this paper is superior to previous defogging technologies in terms of structure similarity index (SSIM), peak signal to noise ratio (PSNR) and subjective visual quality. In order to improve the efficiency of… More >

  • Open AccessOpen Access

    ARTICLE

    DQN-Based Proactive Trajectory Planning of UAVs in Multi-Access Edge Computing

    Adil Khan1,*, Jinling Zhang1, Shabeer Ahmad1, Saifullah Memon2, Babar Hayat1, Ahsan Rafiq3
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4685-4702, 2023, DOI:10.32604/cmc.2023.034892
    Abstract The main aim of future mobile networks is to provide secure, reliable, intelligent, and seamless connectivity. It also enables mobile network operators to ensure their customer’s a better quality of service (QoS). Nowadays, Unmanned Aerial Vehicles (UAVs) are a significant part of the mobile network due to their continuously growing use in various applications. For better coverage, cost-effective, and seamless service connectivity and provisioning, UAVs have emerged as the best choice for telco operators. UAVs can be used as flying base stations, edge servers, and relay nodes in mobile networks. On the other side, Multi-access Edge Computing (MEC) technology also… More >

  • Open AccessOpen Access

    ARTICLE

    Smart Contract to Traceability of Food Social Selling

    Cristian Valencia-Payan*, José Fernando Grass-Ramírez, Gustavo Ramirez-Gonzalez, Juan Carlos Corrales
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4703-4728, 2023, DOI:10.32604/cmc.2023.031554
    Abstract Traditionally, food sustainability has been considered solely in the stage of agricultural production. However, globalization, the expansion of the food production industry, and the emergence of supermarket chains that control the retail food market require specific significant changes in supply chains in the food sector and, therefore, we need to address the economic, social, and environmental impacts of these events. On the other hand, social selling has increased rapidly in recent years, with a further boom, following current events related to the coronavirus disease (COVID-19). This explosion of social sales, where there are usually no control and regulation entities, can… More >

  • Open AccessOpen Access

    ARTICLE

    Implementation of VLSI on Signal Processing-Based Digital Architecture Using AES Algorithm

    Mohanapriya Marimuthu1, Santhosh Rajendran2, Reshma Radhakrishnan2, Kalpana Rengarajan3, Shahzada Khurram4, Shafiq Ahmad5, Abdelaty Edrees Sayed5, Muhammad Shafiq6,*
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4729-4745, 2023, DOI:10.32604/cmc.2023.033020
    Abstract Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated… More >

  • Open AccessOpen Access

    ARTICLE

    Efficient Routing Protocol with Localization Based Priority & Congestion Control for UWSN

    S. Sandhiyaa*, C. Gomathy
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4747-4768, 2023, DOI:10.32604/cmc.2023.032298
    Abstract The nodes in the sensor network have a wide range of uses, particularly on under-sea links that are skilled for detecting, handling as well as management. The underwater wireless sensor networks support collecting pollution data, mine survey, oceanographic information collection, aided navigation, strategic surveillance, and collection of ocean samples using detectors that are submerged in water. Localization, congestion routing, and prioritizing the traffic is the major issue in an underwater sensor network. Our scheme differentiates the different types of traffic and gives every type of traffic its requirements which is considered regarding network resource. Minimization of localization error using the… More >

  • Open AccessOpen Access

    ARTICLE

    Probe Attack Detection Using an Improved Intrusion Detection System

    Abdulaziz Almazyad, Laila Halman, Alaa Alsaeed*
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4769-4784, 2023, DOI:10.32604/cmc.2023.033382
    Abstract The novel Software Defined Networking (SDN) architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive features. Nevertheless, such benefits lead to a more adverse environment entailing network breakdown, systems paralysis, and online banking fraudulence and robbery. As one of the most common and dangerous threats in SDN, probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities, which is then manipulated to undermine the entire system. Precision, high performance, and real-time systems prove pivotal in successful goal… More >

  • Open AccessOpen Access

    ARTICLE

    Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid

    Manish Kumar1,2,*, Nitai Pal1
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4785-4799, 2023, DOI:10.32604/cmc.2022.032971
    Abstract Increasing energy demands due to factors such as population, globalization, and industrialization has led to increased challenges for existing energy infrastructure. Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable, cheap, and easily available sources of energy. Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions. But the integration of distributed energy sources and increase in electric demand enhance instability in the grid. Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness… More >

  • Open AccessOpen Access

    ARTICLE

    Using Informative Score for Instance Selection Strategy in Semi-Supervised Sentiment Classification

    Vivian Lee Lay Shan, Gan Keng Hoon*, Tan Tien Ping, Rosni Abdullah
    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4801-4818, 2023, DOI:10.32604/cmc.2023.033752
    Abstract Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service. Existing studies heavily rely on sentiment classification methods that require fully annotated inputs. However, there is limited labelled text available, making the acquirement process of the fully annotated input costly and labour-intensive. Lately, semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods. Nevertheless, some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training. Literature also shows that not all unlabelled instances are equally useful; thus identifying the informative… More >

Per Page:

Share Link

WeChat scan