Open Access iconOpen Access

ARTICLE

Big Data Testing Techniques: Taxonomy, Challenges and Future Trends

by Iram Arshad1,*, Saeed Hamood Alsamhi1, Wasif Afzal2

1 SRI, TUS, Athlone, Ireland
2 Mälardalen University, Västerås, Sweden

* Corresponding Author: Iram Arshad. Email: email

Computers, Materials & Continua 2023, 74(2), 2739-2770. https://doi.org/10.32604/cmc.2023.030266

Abstract

Big Data is reforming many industrial domains by providing decision support through analyzing large data volumes. Big Data testing aims to ensure that Big Data systems run smoothly and error-free while maintaining the performance and quality of data. However, because of the diversity and complexity of data, testing Big Data is challenging. Though numerous research efforts deal with Big Data testing, a comprehensive review to address testing techniques and challenges of Big Data is not available as yet. Therefore, we have systematically reviewed the Big Data testing techniques’ evidence occurring in the period 2010–2021. This paper discusses testing data processing by highlighting the techniques used in every processing phase. Furthermore, we discuss the challenges and future directions. Our findings show that diverse functional, non-functional and combined (functional and non-functional) testing techniques have been used to solve specific problems related to Big Data. At the same time, most of the testing challenges have been faced during the MapReduce validation phase. In addition, the combinatorial testing technique is one of the most applied techniques in combination with other techniques (i.e., random testing, mutation testing, input space partitioning and equivalence testing) to find various functional faults through Big Data testing.

Keywords


Cite This Article

APA Style
Arshad, I., Alsamhi, S.H., Afzal, W. (2023). Big data testing techniques: taxonomy, challenges and future trends. Computers, Materials & Continua, 74(2), 2739-2770. https://doi.org/10.32604/cmc.2023.030266
Vancouver Style
Arshad I, Alsamhi SH, Afzal W. Big data testing techniques: taxonomy, challenges and future trends. Comput Mater Contin. 2023;74(2):2739-2770 https://doi.org/10.32604/cmc.2023.030266
IEEE Style
I. Arshad, S. H. Alsamhi, and W. Afzal, “Big Data Testing Techniques: Taxonomy, Challenges and Future Trends,” Comput. Mater. Contin., vol. 74, no. 2, pp. 2739-2770, 2023. https://doi.org/10.32604/cmc.2023.030266



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1498

    View

  • 709

    Download

  • 5

    Like

Share Link