Open Access iconOpen Access

ARTICLE

COVID-19 Outbreak Prediction by Using Machine Learning Algorithms

by Tahir Sher1, Abdul Rehman2, Dongsun Kim2,*

1 Department of Creative Technologies, Air University, Islamabad, 44230, Pakistan
2 School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Korea

* Corresponding Author: Dongsun Kim. Email: email

Computers, Materials & Continua 2023, 74(1), 1561-1574. https://doi.org/10.32604/cmc.2023.032020

Abstract

COVID-19 is a contagious disease and its several variants put under stress in all walks of life and economy as well. Early diagnosis of the virus is a crucial task to prevent the spread of the virus as it is a threat to life in the whole world. However, with the advancement of technology, the Internet of Things (IoT) and social IoT (SIoT), the versatile data produced by smart devices helped a lot in overcoming this lethal disease. Data mining is a technique that could be used for extracting useful information from massive data. In this study, we used five supervised ML strategies for creating a model to analyze and forecast the existence of COVID-19 using the Kaggle dataset” COVID-19 Symptoms and Presence.” RapidMiner Studio ML software was used to apply the Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (K-NNs) and Naive Bayes (NB), Integrated Decision Tree (ID3) algorithms. To develop the model, the performance of each model was tested using 10-fold cross-validation and compared to major accuracy measures, Cohan’s kappa statistics, properly or mistakenly categorized cases and root means square error. The results demonstrate that DT outperforms other methods, with an accuracy of 98.42% and a root mean square error of 0.11. In the future, a devised model will be highly recommendable and supportive for early prediction/diagnosis of disease by providing different data sets.

Keywords


Cite This Article

APA Style
Sher, T., Rehman, A., Kim, D. (2023). COVID-19 outbreak prediction by using machine learning algorithms. Computers, Materials & Continua, 74(1), 1561-1574. https://doi.org/10.32604/cmc.2023.032020
Vancouver Style
Sher T, Rehman A, Kim D. COVID-19 outbreak prediction by using machine learning algorithms. Comput Mater Contin. 2023;74(1):1561-1574 https://doi.org/10.32604/cmc.2023.032020
IEEE Style
T. Sher, A. Rehman, and D. Kim, “COVID-19 Outbreak Prediction by Using Machine Learning Algorithms,” Comput. Mater. Contin., vol. 74, no. 1, pp. 1561-1574, 2023. https://doi.org/10.32604/cmc.2023.032020



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1416

    View

  • 712

    Download

  • 3

    Like

Share Link