Open Access
ARTICLE
Swarm Optimization and Machine Learning for Android Malware Detection
1 Centurion University of Technology and Management, Paralakhemundi, Odisha, India
2 Maharaj Vijayaram Gajapathi Raj College of Engineering, Vizianagaram, India
3 Centurion University of Technology and Management, Bhubaneswar, Odisha, India
* Corresponding Author: K. Santosh Jhansi. Email:
Computers, Materials & Continua 2022, 73(3), 6327-6345. https://doi.org/10.32604/cmc.2022.030878
Received 04 April 2022; Accepted 08 June 2022; Issue published 28 July 2022
Abstract
Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential features. The nature-inspired wrapper-based algorithms are evaluated using well-known Machine Learning (ML) classifiers such as Linear Regression (LR), Decision Tree (DT), Random Forest (RF), K–Nearest Neighbor (KNN) & Support Vector Machine (SVM). A hybrid Artificial Neuronal Classifier (ANC) is proposed for improving the classification of android malware. The experimental results yielded an accuracy of 98.87% with just seven features out of hundred API call features, i.e., a massive 93% of data optimization.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.