Open Access iconOpen Access

ARTICLE

Swarm Optimization and Machine Learning for Android Malware Detection

K. Santosh Jhansi1,2,*, P. Ravi Kiran Varma2, Sujata Chakravarty3

1 Centurion University of Technology and Management, Paralakhemundi, Odisha, India
2 Maharaj Vijayaram Gajapathi Raj College of Engineering, Vizianagaram, India
3 Centurion University of Technology and Management, Bhubaneswar, Odisha, India

* Corresponding Author: K. Santosh Jhansi. Email: email

Computers, Materials & Continua 2022, 73(3), 6327-6345. https://doi.org/10.32604/cmc.2022.030878

Abstract

Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential features. The nature-inspired wrapper-based algorithms are evaluated using well-known Machine Learning (ML) classifiers such as Linear Regression (LR), Decision Tree (DT), Random Forest (RF), K–Nearest Neighbor (KNN) & Support Vector Machine (SVM). A hybrid Artificial Neuronal Classifier (ANC) is proposed for improving the classification of android malware. The experimental results yielded an accuracy of 98.87% with just seven features out of hundred API call features, i.e., a massive 93% of data optimization.

Keywords


Cite This Article

APA Style
Jhansi, K.S., Varma, P.R.K., Chakravarty, S. (2022). Swarm optimization and machine learning for android malware detection. Computers, Materials & Continua, 73(3), 6327-6345. https://doi.org/10.32604/cmc.2022.030878
Vancouver Style
Jhansi KS, Varma PRK, Chakravarty S. Swarm optimization and machine learning for android malware detection. Comput Mater Contin. 2022;73(3):6327-6345 https://doi.org/10.32604/cmc.2022.030878
IEEE Style
K.S. Jhansi, P.R.K. Varma, and S. Chakravarty, “Swarm Optimization and Machine Learning for Android Malware Detection,” Comput. Mater. Contin., vol. 73, no. 3, pp. 6327-6345, 2022. https://doi.org/10.32604/cmc.2022.030878



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1579

    View

  • 595

    Download

  • 0

    Like

Share Link