Open Access iconOpen Access

ARTICLE

crossmark

Robust and High Accuracy Algorithm for Detection of Pupil Images

Waleed El Nahal1, Hatim G. Zaini2, Raghad H. Zaini3, Sherif S. M. Ghoneim4,*, Ashraf Mohamed Ali Hassan5

1 Electronics and Communications Engineering Department, Faculty of Engineering, MSA University, CO, 12585, Egypt
2 Computer Engineering Department, College of Computer and Information Technology, Taif University, Taif, 21944, Saudi Arabia
3 Faculty of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
4 Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia
5 Electronics and Communications Engineering Department, Faculty of Engineering, Sinai University, Arish, CO, 45511, Egypt

* Corresponding Author: Sherif S. M. Ghoneim. Email: email

Computers, Materials & Continua 2022, 73(1), 33-50. https://doi.org/10.32604/cmc.2022.028190

Abstract

Recently, many researchers have tried to develop a robust, fast, and accurate algorithm. This algorithm is for eye-tracking and detecting pupil position in many applications such as head-mounted eye tracking, gaze-based human-computer interaction, medical applications (such as deaf and diabetes patients), and attention analysis. Many real-world conditions challenge the eye appearance, such as illumination, reflections, and occasions. On the other hand, individual differences in eye physiology and other sources of noise, such as contact lenses or make-up. The present work introduces a robust pupil detection algorithm with and higher accuracy than the previous attempts for real-time analytics applications. The proposed circular hough transform with morphing canny edge detection for Pupillometery (CHMCEP) algorithm can detect even the blurred or noisy images by using different filtering methods in the pre-processing or start phase to remove the blur and noise and finally the second filtering process before the circular Hough transform for the center fitting to make sure better accuracy. The performance of the proposed CHMCEP algorithm was tested against recent pupil detection methods. Simulations and results show that the proposed CHMCEP algorithm achieved detection rates of 87.11, 78.54, 58, and 78 according to Świrski, ExCuSe, Else, and labeled pupils in the wild (LPW) data sets, respectively. These results show that the proposed approach performs better than the other pupil detection methods by a large margin by providing exact and robust pupil positions on challenging ordinary eye pictures.

Keywords


Cite This Article

APA Style
Nahal, W.E., Zaini, H.G., Zaini, R.H., Ghoneim, S.S.M., Hassan, A.M.A. (2022). Robust and high accuracy algorithm for detection of pupil images. Computers, Materials & Continua, 73(1), 33-50. https://doi.org/10.32604/cmc.2022.028190
Vancouver Style
Nahal WE, Zaini HG, Zaini RH, Ghoneim SSM, Hassan AMA. Robust and high accuracy algorithm for detection of pupil images. Comput Mater Contin. 2022;73(1):33-50 https://doi.org/10.32604/cmc.2022.028190
IEEE Style
W.E. Nahal, H.G. Zaini, R.H. Zaini, S.S.M. Ghoneim, and A.M.A. Hassan, “Robust and High Accuracy Algorithm for Detection of Pupil Images,” Comput. Mater. Contin., vol. 73, no. 1, pp. 33-50, 2022. https://doi.org/10.32604/cmc.2022.028190



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1632

    View

  • 939

    Download

  • 0

    Like

Share Link