Open Access
ARTICLE
Robust and High Accuracy Algorithm for Detection of Pupil Images
1 Electronics and Communications Engineering Department, Faculty of Engineering, MSA University, CO, 12585, Egypt
2 Computer Engineering Department, College of Computer and Information Technology, Taif University, Taif, 21944, Saudi Arabia
3 Faculty of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
4 Department of Electrical Engineering, College of Engineering, Taif University, Taif, 21944, Saudi Arabia
5 Electronics and Communications Engineering Department, Faculty of Engineering, Sinai University, Arish, CO, 45511, Egypt
* Corresponding Author: Sherif S. M. Ghoneim. Email:
Computers, Materials & Continua 2022, 73(1), 33-50. https://doi.org/10.32604/cmc.2022.028190
Received 04 February 2022; Accepted 21 March 2022; Issue published 18 May 2022
Abstract
Recently, many researchers have tried to develop a robust, fast, and accurate algorithm. This algorithm is for eye-tracking and detecting pupil position in many applications such as head-mounted eye tracking, gaze-based human-computer interaction, medical applications (such as deaf and diabetes patients), and attention analysis. Many real-world conditions challenge the eye appearance, such as illumination, reflections, and occasions. On the other hand, individual differences in eye physiology and other sources of noise, such as contact lenses or make-up. The present work introduces a robust pupil detection algorithm with and higher accuracy than the previous attempts for real-time analytics applications. The proposed circular hough transform with morphing canny edge detection for Pupillometery (CHMCEP) algorithm can detect even the blurred or noisy images by using different filtering methods in the pre-processing or start phase to remove the blur and noise and finally the second filtering process before the circular Hough transform for the center fitting to make sure better accuracy. The performance of the proposed CHMCEP algorithm was tested against recent pupil detection methods. Simulations and results show that the proposed CHMCEP algorithm achieved detection rates of 87.11, 78.54, 58, and 78 according to Świrski, ExCuSe, Else, and labeled pupils in the wild (LPW) data sets, respectively. These results show that the proposed approach performs better than the other pupil detection methods by a large margin by providing exact and robust pupil positions on challenging ordinary eye pictures.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.