Open Access iconOpen Access

ARTICLE

crossmark

A Hybrid Neural Network-based Approach for Forecasting Water Demand

Al-Batool Al-Ghamdi1,*, Souad Kamel2, Mashael Khayyat3

1 Department of Computer Science and Artificial Intelligence, College of Computer Sciences and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia
2 Department of Computer and Network Engineering, College of Computer Sciences and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia
3 Department of Information Systems and Technology, College of Computer Sciences and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia

* Corresponding Author: Al-Batool Al-Ghamdi. Email: email

Computers, Materials & Continua 2022, 73(1), 1365-1383. https://doi.org/10.32604/cmc.2022.026246

Abstract

Water is a vital resource. It supports a multitude of industries, civilizations, and agriculture. However, climatic conditions impact water availability, particularly in desert areas where the temperature is high, and rain is scarce. Therefore, it is crucial to forecast water demand to provide it to sectors either on regular or emergency days. The study aims to develop an accurate model to forecast daily water demand under the impact of climatic conditions. This forecasting is known as a multivariate time series because it uses both the historical data of water demand and climatic conditions to forecast the future. Focusing on the collected data of Jeddah city, Saudi Arabia in the period between 2004 and 2018, we develop a hybrid approach that uses Artificial Neural Networks (ANN) for forecasting and Particle Swarm Optimization algorithm (PSO) for tuning ANNs’ hyperparameters. Based on the Root Mean Square Error (RMSE) metric, results show that the (PSO-ANN) is an accurate model for multivariate time series forecasting. Also, the first day is the most difficult day for prediction (highest error rate), while the second day is the easiest to predict (lowest error rate). Finally, correlation analysis shows that the dew point is the most climatic factor affecting water demand.

Keywords


Cite This Article

APA Style
Al-Ghamdi, A., Kamel, S., Khayyat, M. (2022). A hybrid neural network-based approach for forecasting water demand. Computers, Materials & Continua, 73(1), 1365-1383. https://doi.org/10.32604/cmc.2022.026246
Vancouver Style
Al-Ghamdi A, Kamel S, Khayyat M. A hybrid neural network-based approach for forecasting water demand. Comput Mater Contin. 2022;73(1):1365-1383 https://doi.org/10.32604/cmc.2022.026246
IEEE Style
A. Al-Ghamdi, S. Kamel, and M. Khayyat, “A Hybrid Neural Network-based Approach for Forecasting Water Demand,” Comput. Mater. Contin., vol. 73, no. 1, pp. 1365-1383, 2022. https://doi.org/10.32604/cmc.2022.026246



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1324

    View

  • 821

    Download

  • 0

    Like

Share Link