Open Access iconOpen Access

ARTICLE

crossmark

Bio-Inspired Numerical Analysis of COVID-19 with Fuzzy Parameters

F. M. Allehiany1, Fazal Dayan2,3,*, F. F. Al-Harbi4, Nesreen Althobaiti5, Nauman Ahmed2, Muhammad Rafiq6, Ali Raza7, Mawahib Elamin8

1 Department of Mathematical Sciences, College of Applied Sciences, Umm Al-Qura University, Makkah, 21955,Saudi Arabia
2 Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
3 Department of Mathematics, School of Science, University of Management and Technology, Lahore, Pakistan
4 Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
5 Department of Mathematics and Statistics, College of Science, Taif University, Taif, 21944, Saudi Arabia
6 Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
7 Department of Mathematics, Govt. Maulana Zafar Ali Khan Graduate College Wazirabad, Punjab Higher Education Department (PHED), Lahore, 54000, Pakistan
8 Department of Mathematics, College of Science and Arts, Qassim University, Riyadh Al Khabra, Saudi Arabia

* Corresponding Author: Fazal Dayan. Email: email

Computers, Materials & Continua 2022, 72(2), 3213-3229. https://doi.org/10.32604/cmc.2022.025811

Abstract

Fuzziness or uncertainties arise due to insufficient knowledge, experimental errors, operating conditions and parameters that provide inaccurate information. The concepts of susceptible, infectious and recovered are uncertain due to the different degrees in susceptibility, infectivity and recovery among the individuals of the population. The differences can arise, when the population groups under the consideration having distinct habits, customs and different age groups have different degrees of resistance, etc. More realistic models are needed which consider these different degrees of susceptibility infectivity and recovery of the individuals. In this paper, a Susceptible, Infected and Recovered (SIR) epidemic model with fuzzy parameters is discussed. The infection, recovery and death rates due to the disease are considered as fuzzy numbers. Fuzzy basic reproduction number and fuzzy equilibrium points have been derived for the studied model. The model is then solved numerically with three different techniques, forward Euler, Runge-Kutta fourth order method RK-4) and the nonstandard finite difference (NSFD) methods respectively. The NSFD technique becomes more efficient and reliable among the others and preserves all the essential features of a continuous dynamical system.

Keywords


Cite This Article

APA Style
Allehiany, F.M., Dayan, F., Al-Harbi, F.F., Althobaiti, N., Ahmed, N. et al. (2022). Bio-inspired numerical analysis of COVID-19 with fuzzy parameters. Computers, Materials & Continua, 72(2), 3213-3229. https://doi.org/10.32604/cmc.2022.025811
Vancouver Style
Allehiany FM, Dayan F, Al-Harbi FF, Althobaiti N, Ahmed N, Rafiq M, et al. Bio-inspired numerical analysis of COVID-19 with fuzzy parameters. Comput Mater Contin. 2022;72(2):3213-3229 https://doi.org/10.32604/cmc.2022.025811
IEEE Style
F.M. Allehiany et al., “Bio-Inspired Numerical Analysis of COVID-19 with Fuzzy Parameters,” Comput. Mater. Contin., vol. 72, no. 2, pp. 3213-3229, 2022. https://doi.org/10.32604/cmc.2022.025811



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1569

    View

  • 669

    Download

  • 0

    Like

Share Link