Open Access iconOpen Access

ARTICLE

crossmark

Medical Image Analysis Using Deep Learning and Distribution Pattern Matching Algorithm

by Mustafa Musa Jaber1,2,*, Salman Yussof1, Amer S. Elameer3, Leong Yeng Weng1, Sura Khalil Abd2,6, Anand Nayyar4,5

1 Institute of Informatics and Computing in Energy, Universiti Tenaga Nasional, Malaysia
2 Department of Computer Science, Dijlah University Collage, Baghdad, 10021, Iraq
3 Biomedical Informatics College, University of Information Technology and Communications, Baghdad, Iraq
4 Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Viet Nam
5 Graduate School, Duy Tan University, Da Nang, 550000, Viet Nam
6 Department of Computer Science, Al-turath University College, Baghdad, Iraq

* Corresponding Author: Mustafa Musa Jaber. Email: email

Computers, Materials & Continua 2022, 72(2), 2175-2190. https://doi.org/10.32604/cmc.2022.023387

Abstract

Artificial intelligence plays an essential role in the medical and health industries. Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis. However, convolution networks examine medical images effectively; such systems require high computational complexity when recognizing the same disease-affected region. Therefore, an optimized deep convolution network is utilized for analyzing disease-affected regions in this work. Different disease-related medical images are selected and examined pixel by pixel; this analysis uses the gray wolf optimized deep learning network. This method identifies affected pixels by the gray wolf hunting process. The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis. The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule. The pattern-matching process recognizes the disease effectively, and the system's efficiency is evaluated using the MATLAB implementation process. This process ensures high accuracy of up to 99.02% to 99.37% and reduces computational complexity.

Keywords


Cite This Article

APA Style
Jaber, M.M., Yussof, S., Elameer, A.S., Weng, L.Y., Abd, S.K. et al. (2022). Medical image analysis using deep learning and distribution pattern matching algorithm. Computers, Materials & Continua, 72(2), 2175-2190. https://doi.org/10.32604/cmc.2022.023387
Vancouver Style
Jaber MM, Yussof S, Elameer AS, Weng LY, Abd SK, Nayyar A. Medical image analysis using deep learning and distribution pattern matching algorithm. Comput Mater Contin. 2022;72(2):2175-2190 https://doi.org/10.32604/cmc.2022.023387
IEEE Style
M. M. Jaber, S. Yussof, A. S. Elameer, L. Y. Weng, S. K. Abd, and A. Nayyar, “Medical Image Analysis Using Deep Learning and Distribution Pattern Matching Algorithm,” Comput. Mater. Contin., vol. 72, no. 2, pp. 2175-2190, 2022. https://doi.org/10.32604/cmc.2022.023387



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1767

    View

  • 977

    Download

  • 0

    Like

Share Link