Open Access
ARTICLE
Modeling of Explainable Artificial Intelligence for Biomedical Mental Disorder Diagnosis
1 Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
2 Department of Natural and Applied Sciences, Community College, Qassim University, Buraydah, Saudi Arabia
3 Department of Biomedical Engineering, College of Engineering, Princess Nourah Bint Abdulrahman University, Riyadh, 11564, Saudi Arabia
4 Department of Computer Science, King Khalid University, Muhayel Aseer, Saudi Arabia & Faculty of Computer and IT, Sana'a University, Sana'a, 31220, Yemen
5 Department of Information Systems, King Khalid University, Muhayel Aseer, 62529, Saudi Arabia
6 Department of Natural and Applied Sciences, College of Community-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia
* Corresponding Author: Manar Ahmed Hamza. Email:
Computers, Materials & Continua 2022, 71(2), 3853-3867. https://doi.org/10.32604/cmc.2022.022663
Received 14 August 2021; Accepted 05 October 2021; Issue published 07 December 2021
Abstract
The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, Whale Optimization Algorithm (WOA) with Deep Belief Network (DBN) model is also applied for ASD classification process in which the hyperparameters of DBN model are optimally tuned with the help of WOA. In order to ensure a better ASD diagnostic outcome, a series of simulation process was conducted on ASD dataset.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.