Open Access iconOpen Access

ARTICLE

crossmark

Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion

by Abhishek Kumar Shukla*, Sujoy Das

Department of Mathematics, Bio-Informatics and Computer Applications, Maulana Azad National Institute of Technology Bhopal, Bhopal, Madhya Pradesh, 462003, India

* Corresponding Author: Abhishek Kumar Shukla. Email: email

(This article belongs to the Special Issue: Emerging Applications of Artificial Intelligence, Machine learning and Data Science)

Computers, Materials & Continua 2022, 71(2), 3557-3570. https://doi.org/10.32604/cmc.2022.022411

Abstract

The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining, Natural language processing, Image processing, and Information retrieval etc. Word embedding has been applied by many researchers for Information retrieval tasks. In this paper word embedding-based skip-gram model has been developed for the query expansion task. Vocabulary terms are obtained from the top “k” initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query. The performance of the model based on mean average precision is 0.3176. The proposed model compares with other existing models. An improvement of 6.61%, 6.93%, and 9.07% on MAP value is observed compare to the Original query, BM25 model, and query expansion with the Chi-Square model respectively. The proposed model also retrieves 84, 25, and 81 additional relevant documents compare to the original query, query expansion with Chi-Square model, and BM25 model respectively and thus improves the recall value also. The per query analysis reveals that the proposed model performs well in 30, 36, and 30 queries compare to the original query, query expansion with Chi-square model, and BM25 model respectively.

Keywords


Cite This Article

APA Style
Shukla, A.K., Das, S. (2022). Deep neural network and pseudo relevance feedback based query expansion. Computers, Materials & Continua, 71(2), 3557-3570. https://doi.org/10.32604/cmc.2022.022411
Vancouver Style
Shukla AK, Das S. Deep neural network and pseudo relevance feedback based query expansion. Comput Mater Contin. 2022;71(2):3557-3570 https://doi.org/10.32604/cmc.2022.022411
IEEE Style
A. K. Shukla and S. Das, “Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3557-3570, 2022. https://doi.org/10.32604/cmc.2022.022411



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1809

    View

  • 1081

    Download

  • 0

    Like

Share Link