Open Access iconOpen Access

ARTICLE

crossmark

Research on Optimization of Random Forest Algorithm Based on Spark

by Suzhen Wang1, Zhanfeng Zhang1,*, Shanshan Geng1, Chaoyi Pang2

1 Hebei University of Economics and Business, Shijiazhuang, 050061, China
2 Griffith University, Brisbane, 4222, Australia

* Corresponding Author: Zhanfeng Zhang. Email: email

Computers, Materials & Continua 2022, 71(2), 3721-3731. https://doi.org/10.32604/cmc.2022.015378

Abstract

As society has developed, increasing amounts of data have been generated by various industries. The random forest algorithm, as a classification algorithm, is widely used because of its superior performance. However, the random forest algorithm uses a simple random sampling feature selection method when generating feature subspaces which cannot distinguish redundant features, thereby affecting its classification accuracy, and resulting in a low data calculation efficiency in the stand-alone mode. In response to the aforementioned problems, related optimization research was conducted with Spark in the present paper. This improved random forest algorithm performs feature extraction according to the calculated feature importance to form a feature subspace. When generating a random forest model, it selects decision trees based on the similarity and classification accuracy of different decision. Experimental results reveal that compared with the original random forest algorithm, the improved algorithm proposed in the present paper exhibited a higher classification accuracy rate and could effectively classify data.

Keywords


Cite This Article

APA Style
Wang, S., Zhang, Z., Geng, S., Pang, C. (2022). Research on optimization of random forest algorithm based on spark. Computers, Materials & Continua, 71(2), 3721-3731. https://doi.org/10.32604/cmc.2022.015378
Vancouver Style
Wang S, Zhang Z, Geng S, Pang C. Research on optimization of random forest algorithm based on spark. Comput Mater Contin. 2022;71(2):3721-3731 https://doi.org/10.32604/cmc.2022.015378
IEEE Style
S. Wang, Z. Zhang, S. Geng, and C. Pang, “Research on Optimization of Random Forest Algorithm Based on Spark,” Comput. Mater. Contin., vol. 71, no. 2, pp. 3721-3731, 2022. https://doi.org/10.32604/cmc.2022.015378



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2147

    View

  • 1618

    Download

  • 0

    Like

Share Link