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Abstract: Robotic manipulators are widely used in applications that require
fast and precise motion. Such devices, however, are prompt to nonlinear
control issues due to the flexibility in joints and the friction in the motors
within the dynamics of their rigid part. To address these issues, the Linear
Matrix Inequalities (LMIs) and Parallel Distributed Compensation (PDC)
approaches are implemented in the Takagy–Sugeno Fuzzy Model (T-SFM).
We propose the following methodology; initially, the state space equations of
the nonlinear manipulator model are derived. Next, a Takagy–Sugeno Fuzzy
Model (T-SFM) technique is used for linearizing the state space equations
of the nonlinear manipulator. The T-SFM controller is developed using the
Parallel Distributed Compensation (PDC) method. The prime concept of
the designed controller is to compensate for all the fuzzy rules. Furthermore,
the Linear Matrix Inequalities (LMIs) are applied to generate adequate cases
to ensure stability and control. Convex programming methods are applied
to solve the developed LMIs problems. Simulations developed for the pro-
posed model show that the proposed controller stabilized the system with zero
tracking error in less than 1.5 s.

Keywords: Nonlinear robot manipulator; precise fast robot motion; flexible
joints; motor friction; Takagy–Sugeno fuzzy control; modeling nonlinear
flexible robot system

1 Introduction

Recently, robots have been applied widely in situations that require precise movement at
high speeds. In this type of robotic application, the flexibilities in joints [1] and friction [2] are
critical factors of the modeling and control processes. To provide precise tracking despite of
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the existing high nonlinearity effects of joint flexibilities and motor friction, advanced control
techniques are essential to be taken in the control design stage. Generally, nonlinearity is an
essential issue that was and is still the focus of researchers [3–7]. Techniques such as backstepping
control [8], impedance control [9], and sliding mode control [10] are some of the methods used
in the control stage. The main issue of these techniques is that the high order nonlinearity for
fast motion robotics cannot be solved. In contrast, Takagy–Sugeno Fuzzy Model (T-SFM) is an
effective method for representing the high order nonlinear systems in terms of a combination
of state equations [11–13]. In this study, initially, the nonlinear state space representation of the
robot system is derived. It is assumed that the high nonlinearities of 3rd order in the equation
of spring torque of the flexible joint and friction model of Striebeck effect. These nonlinear
sources in the state space equations are substituted by rules of T-SFM. The T-SFM is imple-
mented to linearize the derived state space equation. A controller is designed from the developed
T-SFM using the method of Parallel Distributed Compensation (PDC). The prime concept of
the designed controller is to deduce all the fuzzy rules to compensate for all rules of the fuzzy
model. Furthermore, the linear matrix inequalities (LMIs) are applied to generate adequate cases
for approving the stability and control purpose issues. Convex programming methods are applied
to solve the developed LMIs problems.

This paper is organized as follows. In Section 2, the related work of this study is presented. In
Section 3, the state and output equations of the robot arm are derived. In Section 4, the nonlinear
robot arm model is represented by the Takagi–sugeno model. Section 5 describes the designe of
the controller for the nonlinear robot system. In Section 6, the results of this paper are verified
through simulation tests. Finally, the conclusions are written in Section 7.

2 Related Work

Nonlinearity is an essential issue that has been considered by various researchers in the
control of robot manipulators. In [14], T-SFM is implemented with a sliding mode controller
to solve the issues of the systems having nonlinear dynamic behavior. This proposed controller
showed the high efficiency of avoiding chattering within very accurate tracking. In [15], the
nonlinear parts in the dynamic system equation are identified by using T-SFM model. Next,
using the obtained model from the T-SFM technique, a new controller is designed depending on
estimation principle, i.e., not whole measurements. It is shown that nonlinear partial differential
equation systems can be controlled using an incomplete number of actuators and sensors. In [16],
T-SFM with decomposition controller approach are applied to control the desired trajectory of
aircraft with taking into consideration existing both the inaccuracies in the aircraft model and
disturbances. The introduced control technique stabilized the closed loop system and tracked in
an asymptotically, for a reference step input signal, the pitch angle of the aircraft. In [17], T-
SFM approach is applied to represent a partly-active chair suspension system of electrorheological
damper. The application of the T-SFM approach has simplified the design process of the H∞
controller. Compared to the existing control technique, the introduced Takagy–Sugeno control
technique improved the performance of the the electrorheological damper partly active chair
suspension system. In [18], T-SFMs are applied in the robust control of non-constant speed
wind turbines which utilizes a generator of twice-fed induction type. The suggested Takagy–
Sugeno control method provides the optimum power under considering non-constant wind speed.
In [19], an adaptive T-SFM is proposed for piezoelectric actuators to overcome the issue of
nonlinearity behavior due to the hysteresis features which degrades the tracking performance. The
presented T-SFM showed its efficiency in controlling the piezoelectric actuators without needing
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the mathematical representation of the hysteresis model. Furthermore, the values of the T-SFM
are tuned online to handle the errors of tracking. In [20], an adaptive T-SFM is implemented
in the design of a permanent magnetic generator that uses a turbine system. The adaptive T-
SFM is assured of the ability to supply electricity in a robust and reliable way. In [21], T-SFM
is applied to control an omnidirectional ball robot manipulator of motors which is equipped on
two orthogonal planes. The proposed T-SFM control method satisfied high performance results.
In which, the model rules corresponding to zero and five degrees limited the omnidirectionally
ball robot manipulator performance by narrowing the control range. In [22], TS-FM technique
is applied with observers in commercial vehicles to accomplish the appropriate sensors that are
necessary to realize precise torque sensing. The rule of the TS-FM was to treat the increasing of
nonlinearities in the driving as opposed to load when the speed of the vehicle increased. Based on
the above features of applying T-SFM in various applications, this study is focused on the issues
of nonlinearities due to joint flexibilities and motor friction consideration for fast and precise
motions robot manipulator by T-SFM control.

3 Development of State Space Model

In this section, the state and output equations of the robot arm model are developed.
Selection of the appropriate components [23] and modeling is the important step that should be
implemented before any development [24,25]. Firstly, equations of motion of the robot arm shown
in Fig. 1 are derived. The robot arm model has three main parts: motor, gear, and robot arm [26].
The inertia of the motor, gear and robot arm are denoted by Jmotor, Jgear, and Jarm, respectively.
The robot arm system is actuated by the input torque τin of the motor. Besides this, the friction
effect is assumed to act on the motor within a nonlinear torsion coefficient Kf ,motor. Due to the
flexibility effect, the input torque rotates the motor, the gear and robot arm within an unequal
angular position θmotor, θgear, and θarm, respectively. The flexibility of the gearbox is modeled by a
nonlinear torsion stiffness Kgb. The gear ratio of the gearbox is assumed one, i.e., ngear= 1. Since
this study focused on the nonlinearity of the joints, the flexibility in the robot arm is modeled
by a linear spring of torsion stiffness Karm. Besides the effect of flexibility in the gearbox and
the robot arm, the damping coefficients in the gearbox and the robot arm are considered dgb and
darm, respectively.

Figure 1: The model of the nonlinear robot arm

The nonlinear torque friction part is considered as the effect of coulomb friction and
Striebeck effect. The coulomb friction is assumed as [27].

KC, f ,motor=μNθ̇motor, (1)

The total nonlinear torque friction effect is considered as Tustin friction model [28]:

Kf ,motor=
(
KC, f ,motor+

(
KS, f ,motor−KC, f ,motor

)
e−

θ̇motor
10

)
sign(θ̇motor)+Kv, f ,motorθ̇motor (2)
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where KS, f ,motor, vs, and Kv, f ,motor denote static friction, stribeck velocity, and viscous friction,
respectively. On the other hand, the nonlinear torsion torque of gear model is assumed as

τgb= kgb, 1
(
θ̇motor− θ̇gear

)+ kgb,2(θ̇motor− θ̇gear)
3 (3)

Applying newton second law, the equation of motion for the motor inertia, gear inertia, and
arm inertia is

Jmotorθ̈motor=−Kgb(θmotor− θgear)− dgb
(
θ̇motor− θ̇gear

)−Kf ,motorθ̇motor+ τin, (4)

Jgearθ̈gear =Kgb
(
θmotor− θgear

)+ dgb
(
θ̇motor− θ̇gear

)−Karm
(
θgear− θarm

)− darm
(
θ̇gear− θ̇arm

)
, (5)

Jarmθ̈arm =Karm
(
θgear− θarm

)+ darm
(
θ̇gear− θ̇arm

)
, (6)

Respectively. To get the state space model, assume the following state variables:
x1 = θmotor,x2 = θgear,x3 = θarm,x4 = θ̇motor,x5 = θ̇gear,x6 = θ̇arm, and the output is the angular
velocity of the motor that is assumed y= x4. thus, the differential states are,

ẋ1 = x4, (7)

ẋ2 = x5, (8)

ẋ3 = x6, (9)

ẋ4 = 1
Jmotor

(−Kgb (x1−x2)− dgb (x4−x5)−Kf ,motorx4+ τin
)
, (10)

ẋ5 = 1
Jgear

(
Kgb (x1 −x2)+ dgb (x4 −x5)−Karm (x2−x3)− darm (x5 −x6)

)
, (11)

ẋ6 = 1
Jarm

(Karm (x2−x3)+ darm (x5 −x6)) , (12)

The differential states from Eqs. (7)–(12) and the output formula, i.e., the angular velocity of
the motor, can be arranged in state space model format as⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎦
=A (t)

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦
+B (t) , (13)

y=C (t) ,
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where

A (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−Kgb
Jmotor

Kgb
Jmotor

0
−dgb−Kf ,motor

Jmotor
dgb
Jmotor

0

Kgb
Jgear

−Kgb−Karm
Jgear

Karm
Jgear

dgb
Jgear

−dgb−darm
Jgear

darm
Jgear

0 Karm
Jarm

−Karm
Jarm

0 darm
Jarm

−darm
Jarm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B (t)=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
τin
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C (t)= x4.

The obtained state model in Eq. (13) will be implemented in the next section to be represented
by the T-SFM approach. The numerical results of this study are based on the physical parameters
of the robot model presented in Tab. 1.

Table 1: Proposed robot manipulator parameters

Physical parameter Value (Unit)

Jmotor 6.3× 10−3 (kg.m2)
Jgear 40× 10−3 (kg ·m2)
Jarm 13× 10−3 (kg ·m2)
Karm 6 (N/m)
dgb 35× 10−3 (N · s/m)
darm 95× 10−3 (N · s/m)

After deriving the state equations of our proposed nonlinear robot model, T-SFM can be
implemented to linearize the robot system as explained in the next section.

4 Implementation of T-SFM

T-SFM is implemented to represent the nonlinear state space model of the robot arm. In
addition, the T-SFM has linearized the nonlinear terms in state space equations. The nonlinear
robot arm model will be denoted by T-SFM as

ẋ (t)=
r∑
j=1

ωj(z(t))(Ajx (t)+Bju (t)+ aj), (14)
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y (t)=
r∑
j=1

ωj(z(t))(Cjx (t)+ ci), (15)

where r,Z (t), ωj(z(t)), and “aj & cj” denotes the number of local models, scheduling variables
vector, normalized membership function, and the biases of the jth local model, respectively. Within
T-SFM, the nonlinear robot arm model is exemplified in a close combination of state variables.
Consider the range of the state variables as follow: x1 (t) ∈ [0, 2π ], x2 (t) ∈ [0, 2π ], x3 (t) ∈ [0, 2π ],
x4 (t) ∈ [0, 10], x5 (t) ∈ [0, 10], and x6 (t) ∈ [0, 10]. In Eq. (13), the nonlinear elements due to non-

linear properties of Kf ,motor and Kgb are assumed: z1 (t)= −Kgb
Jmotor

, z2 (t)= Kgb
Jmotor

, z3 (t)= −dgb−Kf ,motor
Jmotor

,

and z4 (t)= −Kgb−Karm
Jgear

. Inserting these formulas in the value of matrix A of Eq. (13), results:

A(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

z1 (t) z2 (t) 0 z3 (t)
dgb
Jmotor

0

z2 (t) z4 (t) Karm
Jgear

dgb
Jgear

−dgb−darm
Jgear

darm
Jgear

0 Karm
Jarm

−Karm
Jarm

0 darm
Jarm

−darm
Jarm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

Under our considered range values, the minimum and maximum values of z1 (t), z2 (t), z3 (t),
z4 (t) are calculated considering the values of the parameters which are involved in their formulas.
In terms of Eq. (14), the scheduling variables can be represented now as

z1 (t)=L1 (z1 (t)) .Max z1 (t)+L2 (z1 (t)) .Min z1 (t) , (17)

z2 (t)=M1 (z2 (t)) .Max z2 (t)+M2 (z1 (t)) .Min z2 (t) , (18)

z3 (t)=N1 (z3 (t)) .Max z3 (t)+N2 (z3 (t)) .Min z3 (t) , (19)

z4 (t)=T1 (z4 (t)) .Max z4 (t)+T2 (z4 (t)) .Min z4 (t) (20)

where L1 (z1 (t)) + L2 (z1 (t)) = 1, M1 (z2 (t)) + M2 (z1 (t)) = 1, N1 (z3 (t)) + N2 (z3 (t)) = 1, and
T1 (z4 (t))+T2 (z4 (t))= 1. Consequently, the membership functions are obtained as:

L1 = z1 (t)−Min z1 (t)
z1 (t) .Max z1 (t)− z1 (t) .Min z1 (t)

, (21)

L2 = z1 (t)−Max z1 (t)
z1 (t) .Min z1 (t)− z1 (t)Max z1 (t)

, (22)

M1 = z2 (t)−Min z2 (t)
z2 (t) .Max z2 (t)− z2 (t) .Min z2 (t)

, (23)

M2 = z2 (t)−Max z2 (t)
z2 (t) .Min z2 (t)− z2 (t)Max z2 (t)

, (24)

N1 = z3 (t)−Min z3 (t)
z3 (t) .Max z3 (t)− z3 (t) .Min z3 (t)

, (25)
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N2 = z3 (t)−Max z3 (t)
z3 (t) .Min z3 (t)− z3 (t)Max z3 (t)

, (26)

T1 = z4 (t)−Min z4 (t)
z4 (t) .Max z4 (t)− z4 (t) .Min z4 (t)

, (27)

T2 = z4 (t)−Max z4 (t)
z4 (t) .Min z4 (t)− z4 (t)Max z4 (t)

, (28)

these membership functions L1, L2, M1, M2, N1, N2, T1, and T2 are named as Big_1, Small_1,
Big_2, Small_2, Big_3, Small_3, Big_4, Small_4, respectively.

5 Controller Design

The presented design of the controller is closely related to the feature of the derived T-SFM in
the previous section. This feature is that the terms of state equations z1 (t), z2 (t), z3 (t), and z4 (t)
are not constant. These terms are varying corresponding to the torsion torque Kgb and motor
friction Kf ,motor depends on the velocities of motor and gear of the state variables. This property
was the source of the high nonlinearity in the robot arm model. Consequently, for linearization
purpose, the nonlinear robot arm system is expressed by the bellow fuzzy model:

Model rule 1

If z1 (t) is Small_1 and z2 (t) is Small_2 and z3 (t) is Small_3 and z4 (t) is Small_4 then

ẋ (t)=A1x (t)+B1u (t)

Model rule 2

If z1 (t) is Small_1 and z2 (t) is Small_2 and z3 (t) is Small_3 and z4 (t) is Big_4 then

ẋ (t)=A2x (t)+B2u (t)

Model rule 3

If z1 (t) is Small_1 and z2 (t) is Small_2 and z3 (t) is Big_3 and z4 (t) is Small_4 then

ẋ (t)=A3x (t)+B3u (t)

Model rule 4

If z1 (t) is Small_1 and z2 (t) is Small_2 and z3 (t) is Big_3 and z4 (t) is Big_4 then

ẋ (t)=A4x (t)+B4u (t)

Model rule 5

If z1 (t) is Small_1 and z2 (t) is Big_2 and z3 (t) is Small_3 and z4 (t) is Small_4 then

ẋ (t)=A5x (t)+B5u (t)

Model rule 6

If z1 (t) is Small_1 and z2 (t) is Big_2 and z3 (t) is Small_3 and z4 (t) is Big_4 then

ẋ (t)=A6x (t)+B6u (t)
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Model rule 7

If z1 (t) is Small_1 and z2 (t) is Big_2 and z3 (t) is Big_3 and z4 (t) is Small_4 then

ẋ (t)=A7x (t)+B7u (t)

Model rule 8

If z1 (t) is Small_1 and z2 (t) is Big_2 and z3 (t) is Big_3 and z4 (t) is Big_4 then

ẋ (t)=A8x (t)+B8u (t)

Model rule 9

If z1 (t) is Big_1 and z2 (t) is Small_2 and z3 (t) is Small_3 and z4 (t) is Small_4 then

ẋ (t)=A9x (t)+B9u (t)

Model rule 10

If z1 (t) is Big_1 and z2 (t) is Small_2 and z3 (t) is Small_3 and z4 (t) is Big_4 then

ẋ (t)=A10x (t)+B10u (t)

Model rule 11

If z1 (t) is Big_1 and z2 (t) is Small_2 and z3 (t) is Big_3 and z4 (t) is Small_4 then

ẋ (t)=A11x (t)+B11u (t)

Model rule 12

If z1 (t) is Big_1 and z2 (t) is Small_2 and z3 (t) is Big_3 and z4 (t) is Big_4 then

ẋ (t)=A12x (t)+B12u (t)

Model rule 13

If z1 (t) is Big_1 and z2 (t) is Big_2 and z3 (t) is Small_3 and z4 (t) is Small_4 then

ẋ (t)=A13x (t)+B13u (t)

Model rule 14

If z1 (t) is Big_1 and z2 (t) is Big_2 and z3 (t) is Small_3 and z4 (t) is Big_4 then

ẋ (t)=A14x (t)+B14u (t)

Model rule 15

If z1 (t) is Big_1 and z2 (t) is Big_2 and z3 (t) is Big_3 and z4 (t) is Small_4 then

ẋ (t)=A15x (t)+B15u (t)

Model rule 16

If z1 (t) is Big_1 and z2 (t) is Big_2 and z3 (t) is Big_3 and z4 (t) is Small_4 then

ẋ (t)=A16x (t)+B16u (t)
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In this way, the nonlinear robot model can be described in the following general formula

Model rule j : If z1 (t) isMj
1 and z2 (t) isMj

2 and z3 (t) isMj
3 and z4 (t) isMj

4

Then ẋ (t)=Ajx (t)+Bju (t) , j= 1, . . . , 16 (29)

Applying the defuzzification principle of fuzzy method, the output of the system is
obtained as:

ẋ (t)=
∑r

j=1 ωj(z(t))(Ajx (t)+Bju (t)+ aj)∑r
j=1 ωj(z(t))

(30)

y (t)=
∑r

j=1 ωj(z(t))(Cjx (t)+ ci)∑r
j=1 ωj(z(t))

(31)

where ωj(z(t)) denotes the membership function for the model rule j. Hence

ωj (z (t))=
r∏

v=1

Mj
v(xv(t)) (32)

For the obtained T-S fuzzy model rule, the technique of state feedback is applied to develop
the following control rules

Model rule j : If z1 (t) isMj
1 and z2 (t) isMj

2 and z3 (t) isMj
3 and z4 (t) isMj

4

Thenu (t)=Kjx (t) , j= 1, . . . , 16 (33)

The PDC technique is implemented in this study to find the solution of the system using
the obtained T-SFM. Considering Eqs. (29) and (33), PDC technique is applied to design the
controller based on T-S fuzzy approach as follow

u (t)=
∑16

j=1 ωj (z (t))Kjx(t)∑16
j=1 ωj (z (t))

(34)

Our developed mode rules in Eq. (29) can be asymptotically stable by a potential positive
matrix Q when satisfying the following conditions:

QATj +AjQ+VT
j B

T
j +BjVj < 0, j= 1, 2, . . . , 16 (35)

QATj +AjQ+QATk +AkQ+VT
k B

T
j +BjVk+VT

j B
T
k +BkVj < 0, j< k≤ 16 (36)

Q=P−1 > 0 (37)

where Vj =KjQ. Consequently, Kj in Eq. (34) can be calculated by implementing the above LMI
conditions.
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6 A Numerical Example

In this section, simulation tests with MatLab R2017b are implemented to verify the perfor-
mance of the designed controller for the robot arm model of the parameters that are listed in
Tab. 1 with initial arm position and angular velocity 2◦ and 0 rad/s, respectively. The control issue
of the robot arm system shown in Fig. 1 is assumed to reach the robot arm a desired position
by applying a motor torque input. Furthermore, it is assumed that the robot arm is stabilized at
a specific angle. The robot arm model is specified in Eq. (13). By using Eq. (35), for 16 rules, we
get 16 LMI of the robot arm as follows:

QAT1 +A1Q+VT
1 B

T
1 +B1V1 < 0, (38)

QAT2 +A2Q+VT
2 B

T
2 +B2V2 < 0, (39)

QAT3 +A3Q+VT
3 B

T
3 +B3V3 < 0, (40)

QAT4 +A4Q+VT
4 B

T
4 +B4V4 < 0, (41)

QAT5 +A5Q+VT
5 B

T
5 +B5V5 < 0, (42)

QAT6 +A6Q+VT
6 B

T
6 +B6V6 < 0, (43)

QAT7 +A7Q+VT
7 B

T
7 +B7V7 < 0, (44)

QAT8 +A8Q+VT
8 B

T
8 +B8V8 < 0, (45)

QAT9 +A9Q+VT
9 B

T
9 +B9V9 < 0, (46)

QAT10+A10Q+VT
10B

T
10+B10V10 < 0, (47)

QAT11+A11Q+VT
11B

T
11+B11V11 < 0, (48)

QAT12+A12Q+VT
12B

T
12+B12V12 < 0, (49)

QAT13+A13Q+VT
13B

T
13+B13V13 < 0, (50)

QAT14+A14Q+VT
14B

T
14+B14V14 < 0, (51)

QAT15+A15Q+VT
15B

T
15+B15V15 < 0, (52)

QAT16+A16Q+VT
16B

T
16+B16V16 < 0, (53)

where Q is obtained as explained in Eq. (37). For j< k≤ 16, from Eq. (36), we have QATj +AjQ+
QATk +AkQ+VT

k B
T
j +BjVk+VT

j B
T
k +BkVj < 0. Hence, there are 240 LMI can be designed as:

• j = 1, k= 2, j = 1, k= 3, j = 1, k= 4, j = 1, k= 5, j = 1, k= 6, j = 1, k= 7, j = 1, k=
8, j= 1, k= 9, j= 1, k= 10, j= 1, k= 11, j= 1, k= 12, j= 1, k= 13, j= 1, k= 14, j=
1, k= 15, j= 1, k= 16,

• j = 2, k= 3, j = 2, k= 4, j = 2, k= 5, j = 2, k= 6, j = 2, k= 7, j = 2, k= 8, j = 2, k=
9, j= 2, k= 10, j= 2, k= 11, j= 2, k= 12, j= 2, k= 13, j= 2, k= 14, j= 2, k= 15, j=
2, k= 16,

• j = 3, k= 4, j = 3, k= 5, j = 3, k= 6, j = 3, k= 7, j = 3, k= 8, j = 3, k= 9, j = 3, k=
10, j= 3, k= 11, j= 3, k= 12, j= 3, k= 13, j= 3, k= 14, j= 3, k= 15, j= 3, k= 16,
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• j= 4, k= 5, j= 4, k= 6, j= 4, k= 7, j= 4, k= 8, j= 4, k= 9, j= 4, k= 10, j= 4, k=
11, j= 4, k= 12, j= 4, k= 13, j= 4, k= 14, j= 4, k= 15, j= 4, k= 16,

• j= 5, k= 6, j= 5, k= 7, j= 5, k= 8, j= 5, k= 9, j= 5, k= 10, j= 5, k= 11, j= 5, k=
12, j= 5, k= 13, j= 5, k= 14, j= 5, k= 15, j= 5, k= 16,

• j = 6, k = 7, j = 6, k = 8, j = 6, k = 9, j = 6, k = 10, j = 6, k = 11, j = 6, k = 12, j =
6, k= 13, j= 6, k= 14, j= 6, k= 15, j= 6, k= 16,

• j = 7, k = 8, j = 7, k = 9, j = 7, k = 10, j = 7, k = 11, j = 7, k = 12, j = 7, k = 13, j =
7, k= 14, j= 7, k= 15, j= 7, k= 16,

• j = 8, k = 9, j = 8, k = 10, j = 8, k = 11, j = 8, k = 12, j = 8, k = 13, j = 8, k = 14, j =
8, k= 15, j= 8, k= 16,

• j = 9, k= 10, j = 9, k= 11, j = 9, k = 12, j = 9, k= 13, j = 9, k= 14, j = 9, k = 15, j =
9, k= 16,

• j= 10, k= 11, j= 10, k= 12, j= 10, k= 13, j= 10, k= 14, j= 10, k= 15, j= 10, k= 16,
• j= 11, k= 12, j= 11, k= 13, j= 11, k= 14, j= 11, k= 15, j= 11, k= 16,
• j= 12, k= 13, j= 12, k= 14, j= 12, k= 15, j= 12, k= 16,
• j= 13, k= 14, j= 13, k= 15, j= 13, k= 16,
• j= 14, k= 15, j= 14, k= 16,
• j= 15, k= 16.

One of the essential considerations of LMI design is the interconnection of membership j
and k. For instance, assume j = 11 and k= 12. Thus, the interaction between the 11th fuzzy rule
and the 12th fuzzy rule should be considered. The obtained LMI in this case is

QAT11+A11Q+QAT12 +A12Q+VT
12B

T
11+B11V12+VT

11B
T
12+B12V11 < 0, (54)

Referring to Eq. (41), T-SFM controller has been designed by applying PDC technique

u=w1 (z1 (t))K1x (t)+w2 (z2 (t))K2x (t)+w3 (z3 (t))K3x (t)+w4 (z4 (t))K4x (t)

+w5 (z5 (t))K5x (t)+w6 (z6 (t))K6x (t)+w7 (z7 (t))K7x (t)

+w8 (z8 (t))K8x (t)+w9 (z9 (t))K9x (t)+w10 (z10 (t))K10x (t)

+w11 (z11 (t))K11x (t)+w12 (z12 (t))K12x (t)+w13 (z13 (t))K13x (t)

+w14 (z14 (t))K14x (t)+w15 (z15 (t))K15x (t)+w16 (z16 (t))K16x (t) (55)

where Ki = ViP, i= 1, 2, . . . , 16. Utilizing both of LMI and YALMIP toolboxes, the values of Q
and Vi are obtained. Consequently, Ki is obtained as:

K1 =
[
4263 3908 6811 5229

]
, K2 =

[
1298 9084 7482 9502

]
,

K3 =
[
6015 8918 7671 4980

]
, K4 =

[
3173 4423 7912 6245

]
,

K5 =
[
8903 9562 3891 4291

]
, K6 =

[
4189 6922 9826 5229

]
,

K7 =
[
5103 7984 6712 3108

]
, K8 =

[
6186 9612 8866 5439

]
,

K9 =
[−7139 −4700 −6559 −5999

]
, K10 =

[−5654 −6357 −7383 −9072
]
,

K11 =
[−8049 −4568 −9641 −4689

]
, K12 =

[−7678 −6473 −7213 −6541
]
,

K13 =
[−6984 −8867 −6293 −4796

]
, K14 =

[−5180 −8744 −1746 −6244
]
,

K15 =
[−3523 −7650 −8102 −9719

]
, K16 =

[−5780 −7217 −6834 −7422
]
.

7 Results

The simulation results of the proposed model are shown in Figs. 2 and 3. In Fig. 2, the results
of the robot arm position and velocity are presented for the equilibrium situation where x and
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ẋ are equal to zero with time above 1.5 s. The simulation shows the transient response between
t= 0 s and t= 1.5 s. In which, the arm position is reached to zero at time 0.35 s in a linear way. On
the other side, the angular velocity of the arm reached its maximum value 7.8 rad/s in opposite
direction at time 0.11 s. The dynamic effect of the robot arm is caused by the input torque of
the motor presented in Fig. 3. As shown in Fig. 3, to stabilized the robot arm to 0◦ position, the
motor should supply a torque 7880N.m in a short time as an impulse signal. The results of Fig. 3
are useful in determining the suitable features of the potential motor for the proposed robot arm
physical parameters.

Figure 2: States of arm response

Figure 3: Input torque of motor

8 Conclusion

In this paper, a new control technique of the rotation motion of a nonlinear robot arm
manipulator is introduced. The LMI and PDC control approaches are implemented based on TS-
FM of the state space equations. The TS-FM has been developed for linearizing the nonlinear
parameters in the state space equations in appropriately selected conditions of the operating
points. The prime concept of the designed controller is to deduce all the fuzzy rules using the PDC
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approach in order to compensate for all rules of the fuzzy model. Furthermore, the linear matrix
inequalities (LMIs) are applied to generate adequate cases for approving the stability and control
purpose issues. The simulation results demonstrate that the proposed control technique stabilized
the system with zero tracking error in less than 1.5 s. This is a suitable control performance
for nonlinear robot arm models. The main limitation of this work is the non-utilization of opti-
mization techniques such as genetic algorithms to find the optimum boundaries of membership
functions that minimize the tracking errors. This will be addressed in the future by using such
approaches to deal with the design membership functions in this application considering their
types and boundaries.

Funding Statement: The authors received no specific funding for this research study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[1] A. D. Luca and W. J. Book, Robots with flexible elements. In: Springer Handbook of Robotics, 1st ed.,
Berlin, Heidelberg: Springer, pp. 243–282, 2016.

[2] M. Wojtyra, “Modeling of static friction in closed-loop kinematic chains-uniqueness and parametric
sensitivity problems,” Multibody System Dynamics, vol. 39, no. 4, pp. 337–361, 2017.

[3] O. S. Solaiman, S. Ariffin and I. Hashim, “Dynamical comparison of several third-order iterative
methods for nonlinear equations,” Computers,Materials & Continua, vol. 67, no. 2, pp. 1951–1962, 2021.

[4] A. A. Hamad, A. S. Al-Obeidi, E. H. Al-Taiy, O. I. Khalaf and D. Le, “Synchronization phenom-
ena investigation of a new nonlinear dynamical system 4D by Gardano’s and Lyapunov’s methods,”
Computers, Materials & Continua, vol. 66, no. 3, pp. 3311–3327, 2021.

[5] S. A. Sariman and I. Hashim, “New optimal Newton-householder methods for solving nonlinear
equations and their dynamics,” Computers, Materials & Continua, vol. 65, no. 1, pp. 69–85, 2020.

[6] C. Ku and W. Yeih, “Dynamical Newton-like methods with adaptive stepsize for solving nonlinear
algebraic equations,” Computers, Materials & Continua, vol. 31, no. 3, pp. 173–200, 2012.

[7] Z. Sun, Y. Bi, S. Chen, B. Hu, F. Xiang et al., “Designing and optimization of fuzzy sliding mode
controller for nonlinear systems,” Computers, Materials & Continua, vol. 61, no. 1, pp. 119–128, 2019.

[8] M. Chu, Q. Jia and H. Sun, “Backstepping control for flexible joint with friction using wavelet neural
networks and L2-gain approach,” Asian Journal of Control, vol. 20, no. 2, pp. 856–866, 2018.

[9] T. Ren, T. Dong, D. Wu and K. Chen, “Impedance control of collaborative robots based on joint
torque servo with active disturbance rejection,” Industrial Robot: The International Journal of Robotics
Research and Application, vol. 46, no. 4, pp. 518–528, 2019.

[10] S. Amirkhani, S. Mobayen, N. Iliaee, O. Boubaker and S. H. Hosseinnia, “Fast terminal sliding
mode tracking control of nonlinear uncertain mass-spring system with experimental verifications,”
International Journal of Advanced Robotic Systems, vol. 16, no. 1, pp. 1729881419828176, 2019.

[11] A. Benzaouia and A. E. Hajjaji, Advanced Takagi–Sugeno systems: Delay and saturation. In: Studies
in Systems, Decision and Control, 1st ed., vol. 8. Switzerland: Springer International Publishing, 2014.

[12] M. Namazov and A. Alili, “Stable and optimal controller design for Takagi–Sugeno fuzzy model based
control systems via linear matrix inequalities,” in Proc. of Int.Conf. on Automatics and Informatics, Sofia,
Bulgaria, pp. 69–72, 2016.

[13] J. Liu, Intelligent Control Design and Matlab Simulation, 1st ed., Singapore: Springer, 2018.
[14] L. Chaouech and A. Chaari, “Design of sliding mode control of nonlinear system based on Takagi–

Sugeno fuzzy model,” in World Congress on Computer and Information Technology (WCCIT), Sousse,
Tunisia, pp. 1–6, 2013.



1024 CMC, 2022, vol.71, no.1

[15] X. Song, M. Wang, Q. Zhang, S. Song and Z. Wang, “Takagi–Sugeno fuzzy model based event
triggered point control for semilinear partial differential equation systems using collocated pointwise
measurements,” International Journal of Robust and Nonlinear Control, vol. 31, no. 4, pp. 1122–1144,
2021.

[16] P. Hušek and K. Narenathreyas, “Aircraft longitudinal motion control based on Takagi–Sugeno fuzzy
model,” Applied Soft Computing, vol. 49, pp. 269–278, 2016.

[17] X. Tang, D. Ning, H. Du, W. Li and W. Wen, “Takagi–Sugeno fuzzy model-based semi-active control
for the seat suspension with an electrorheological damper,” IEEEAccess, vol. 8, pp. 98027–98037, 2020.

[18] A. V. Hemeyine, A. Abbou, N. Tidjani, M. Mokhlis and A. Bakouri, “Robust Takagi–Sugeno fuzzy
models control for a variable speed wind turbine based a DFI-generator,” International Journal of
Intelligent Engineering and Systems, vol. 13, no. 3, pp. 90–100, 2020.

[19] L. Cheng, W. Liu, Z. Hou, T. Huang, J. Yu et al., “An adaptive Takagi–Sugeno fuzzy Model-based
predictive controller for piezoelectric actuators,” IEEE Transactions on Industrial Electronics, vol. 64, no.
4, pp. 3048–3058, 2017.

[20] Y. C. Lin, V. E. Balas, J. F. Yang and Y. H. Chang, “Adaptive Takagi–Sugeno fuzzy model predictive
control for permanent magnet synchronous generator-based hydrokinetic turbine systems,” Energies,
vol. 13, no. 20, pp. 5296, 2020.

[21] C. H. Chiu and Y. F. Peng, “Design of Takagi–Sugeno fuzzy control scheme for real world system
control,” Sustainability, vol. 11, no. 14, pp. 3855, 2019.

[22] X. Zhu and W. Li, “Takagi–Sugeno fuzzy model based shaft torque estimation for integrated motor-
transmission system,” ISA Transactions, vol. 93, pp. 14–22, 2019.

[23] I. Al-Darraji, M. Derbali, H. Jerbi, F. Q. Khan, S. Jan et al., “A technical framework for selection of
autonomous uav navigation technologies and sensors,” Computers, Materials & Continua, vol. 68, no. 2,
pp. 2771–2790, 2021.

[24] I. Al-Darraji, D. Piromalis, A. A. Kakei, F. Q. Khan, M. Stojmenovic et al., “Adaptive robust controller
design-based RBF neural network for aerial robot arm model,” Electronics, vol. 10, no. 7, pp. 831,
2021.

[25] I. Al-Darraji, M. Derbali and G. Tsaramirsis, “Tilting-rotors quadcopters: A new dynamics modelling
and simulation based on the Newton–Euler method with lead compensator control,” in Proc. of 8th Int.
Conf. on Computing for Sustainable Global Development (INDIACom), New Delhi, India, pp. 363–369,
2021.

[26] E. Wernholt and S. Gunnarsson, “Nonlinear identification of a physically parameterized robot model
1,” IFAC Proceedings, vol. 39, no. 1, pp. 143–148, 2006.

[27] G. Ellis, Nonlinear behavior and time variation. In: Control System Design Guide: Using Your Computer
to Understand and Diagnose Feedback Controllers, 4th ed., Waltham, USA: Butterworth-Heinemann,
pp. 235–259, 2012. [Online]. Available at: https://www.sciencedirect.com/book/9780123859204/control-
system-design-guide.

[28] L. Márton and B. Lantos, “Identification and model-based compensation of striebeck friction,” Acta
Polytechnica Hungarica, vol. 3, no. 3, pp. 45–58, 2006.

https://www.sciencedirect.com/book/9780123859204/control-system-design-guide
https://www.sciencedirect.com/book/9780123859204/control-system-design-guide

