Open Access
ARTICLE
Decagonal C-Shaped CSRR Textile-Based Metamaterial for Microwave Applications
1 Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Jalan Tiga, Pengkalan Jaya Business Centre, Kangar, 01000, Malaysia
2 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP Pauh Putra, Arau, 02600, Malaysia
3 Centre for Wireless Communications (CWC), University of Oulu, 90014, Finland
4 Space Science Centre, Climate Change Institute, Universiti Kebangsaan Malaysia, Bangi, 43600, Malaysia
5 Department of Teacher Training in Electrical Engineering, Faculty of Technical Education, King Mongkut's University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, 10800, Thailand
6 Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, 10800, Thailand
* Corresponding Author: Thennarasan Sabapathy. Email:
Computers, Materials & Continua 2022, 71(1), 1677-1693. https://doi.org/10.32604/cmc.2022.022227
Received 31 July 2021; Accepted 18 September 2021; Issue published 03 November 2021
Abstract
This paper introduces a decagonal C-shaped complementary split-ring resonator (CSRR) textile-based metamaterial (MTM). The overall size of the proposed sub-wavelength MTM unit cell is 0.28λ0 × 0.255λ0 at 3 GHz. Its stopband behaviour was first studied prior analysing the negative index properties of the proposed MTM. It is worth noting that in this work a unique way the experiments were completed. For both simulations and measurements, the proposed MTM exhibited negative-permittivity and negative-refractive index characteristics with an average bandwidth of more than 3 GHz (considering 1.7 to 8.2 GHz as the measurements were carried out within this range). In simulations, the MTM exhibited negative-permittivity properties within the range of 1.7 to 7.52 GHz and 7.96 to 8.2 GHz; and negative-refractive index from 1.7 to 2.23 GHz and 2.33 to 5.09 GHz and 5.63 to 7.45 GHz. When measured from 1.7 to 8.2 GHz, negative-permittivity and negative-refractive index characteristics are exhibited throughout an average bandwidth of more than 3 GHz. Similarly, the transmission coefficient attained in simulations and measurements indicated about 3 GHz of bandwidth, from 1.7 to 3.88 GHz and from 6.68 to 7.4 GHz. The satisfactory agreement between simulations and experiments indicates the potential of the proposed MTM for microwave applications.Keywords
Cite This Article
Citations
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.