Open Access
ARTICLE
Deep Learning Based Audio Assistive System for Visually Impaired People
Department of Computer Science and Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
* Corresponding Author: S. Kiruthika Devi. Email:
Computers, Materials & Continua 2022, 71(1), 1205-1219. https://doi.org/10.32604/cmc.2022.020827
Received 10 June 2021; Accepted 05 August 2021; Issue published 03 November 2021
Abstract
Vision impairment is a latent problem that affects numerous people across the globe. Technological advancements, particularly the rise of computer processing abilities like Deep Learning (DL) models and emergence of wearables pave a way for assisting visually-impaired persons. The models developed earlier specifically for visually-impaired people work effectually on single object detection in unconstrained environment. But, in real-time scenarios, these systems are inconsistent in providing effective guidance for visually-impaired people. In addition to object detection, extra information about the location of objects in the scene is essential for visually-impaired people. Keeping this in mind, the current research work presents an Efficient Object Detection Model with Audio Assistive System (EODM-AAS) using DL-based YOLO v3 model for visually-impaired people. The aim of the research article is to construct a model that can provide a detailed description of the objects around visually-impaired people. The presented model involves a DL-based YOLO v3 model for multi-label object detection. Besides, the presented model determines the position of object in the scene and finally generates an audio signal to notify the visually-impaired people. In order to validate the detection performance of the presented method, a detailed simulation analysis was conducted on four datasets. The simulation results established that the presented model produces effectual outcome over existing methods.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.