Open Access iconOpen Access

ARTICLE

crossmark

Ultra-wideband Frequency Selective Surface for Communication Applications

Shahid Habib1, Ghaffer Iqbal Kiani2, Muhammad Fasih Uddin Butt1,3,*, Syed Muzahir Abbas4,5, Abdulah Jeza Aljohani2, Soon Xin Ng3

1 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, 45550, Pakistan
2 Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
3 School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
4 School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
5 BENELEC, Botany, Sydney, NSW, 2019, Australia

* Corresponding Author: Muhammad Fasih Uddin Butt. Email: email

(This article belongs to the Special Issue: Advances in 5G Antenna Designs and Systems)

Computers, Materials & Continua 2022, 70(3), 6177-6187. https://doi.org/10.32604/cmc.2022.021644

Abstract

A low-profile ultra-wideband (UWB) band-stop frequency selective surface (FSS) is designed for S-, C-, X- and Ku-bands communication applications. The FSS is constructed by using square and circular loop elements printed on the top and bottom sides of the RO3210 substrate. The FSS has been designed to reduce the electromagnetic interference (EMI) as well as to mitigate the harmful effects of electromagnetic radiation on the human body caused by different radio devices. The dimension and size of the UWB FSS have been reduced to 0.12 λ × 0.12 λ and 90%, respectively, as compared to the reported literature. The other advantages of the proposed FSS are that it is low profile, it has a simplified geometry and it ensures better angular and polarization stability of up to 85°. The –10 and –20 dB bandwidths of the proposed FSS are 146% (2.0–13.0 GHz) and 80% (4.87–11.42 GHz), respectively. Theoretical results have been obtained using ANSYS HFSS and verified through measured results.

Keywords


Cite This Article

APA Style
Habib, S., Kiani, G.I., Butt, M.F.U., Abbas, S.M., Aljohani, A.J. et al. (2022). Ultra-wideband frequency selective surface for communication applications. Computers, Materials & Continua, 70(3), 6177-6187. https://doi.org/10.32604/cmc.2022.021644
Vancouver Style
Habib S, Kiani GI, Butt MFU, Abbas SM, Aljohani AJ, Ng SX. Ultra-wideband frequency selective surface for communication applications. Comput Mater Contin. 2022;70(3):6177-6187 https://doi.org/10.32604/cmc.2022.021644
IEEE Style
S. Habib, G.I. Kiani, M.F.U. Butt, S.M. Abbas, A.J. Aljohani, and S.X. Ng, “Ultra-wideband Frequency Selective Surface for Communication Applications,” Comput. Mater. Contin., vol. 70, no. 3, pp. 6177-6187, 2022. https://doi.org/10.32604/cmc.2022.021644



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2927

    View

  • 1923

    Download

  • 0

    Like

Share Link