Open Access iconOpen Access

ARTICLE

crossmark

Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning

Atif Naseer1,*, Enrique Nava Baro1, Sultan Daud Khan2, Yolanda Vila3, Jennifer Doyle4

1 ETSI Telecomunicación, Universidad de Málaga, Málaga, 29071, Spain
2 Department of Computer Science, National University of Technology, Islamabad, 44000, Pakistan
3 Instituto Español de Oceanografía, Centro Oceanográfico de Cádiz, Cádiz, 39004, Spain
4 Marine Institute Rinville, Oranmore, Ireland

* Corresponding Author: Atif Naseer. Email: email

Computers, Materials & Continua 2022, 70(3), 5321-5344. https://doi.org/10.32604/cmc.2022.020886

Abstract

The Norway lobster, Nephrops norvegicus, is one of the main commercial crustacean fisheries in Europe. The abundance of Nephrops norvegicus stocks is assessed based on identifying and counting the burrows where they live from underwater videos collected by camera systems mounted on sledges. The Spanish Oceanographic Institute (IEO) and Marine Institute Ireland (MI-Ireland) conducts annual underwater television surveys (UWTV) to estimate the total abundance of Nephrops within the specified area, with a coefficient of variation (CV) or relative standard error of less than 20%. Currently, the identification and counting of the Nephrops burrows are carried out manually by the marine experts. This is quite a time-consuming job. As a solution, we propose an automated system based on deep neural networks that automatically detects and counts the Nephrops burrows in video footage with high precision. The proposed system introduces a deep-learning-based automated way to identify and classify the Nephrops burrows. This research work uses the current state-of-the-art Faster RCNN models Inceptionv2 and MobileNetv2 for object detection and classification. We conduct experiments on two data sets, namely, the Smalls Nephrops survey (FU 22) and Cadiz Nephrops survey (FU 30), collected by Marine Institute Ireland and Spanish Oceanographic Institute, respectively. From the results, we observe that the Inception model achieved a higher precision and recall rate than the MobileNet model. The best mean Average Precision (mAP) recorded by the Inception model is 81.61% compared to MobileNet, which achieves the best mAP of 75.12%.

Keywords


Cite This Article

APA Style
Naseer, A., Baro, E.N., Khan, S.D., Vila, Y., Doyle, J. (2022). Automatic detection of nephrops norvegicus burrows from underwater imagery using deep learning. Computers, Materials & Continua, 70(3), 5321-5344. https://doi.org/10.32604/cmc.2022.020886
Vancouver Style
Naseer A, Baro EN, Khan SD, Vila Y, Doyle J. Automatic detection of nephrops norvegicus burrows from underwater imagery using deep learning. Comput Mater Contin. 2022;70(3):5321-5344 https://doi.org/10.32604/cmc.2022.020886
IEEE Style
A. Naseer, E.N. Baro, S.D. Khan, Y. Vila, and J. Doyle, “Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning,” Comput. Mater. Contin., vol. 70, no. 3, pp. 5321-5344, 2022. https://doi.org/10.32604/cmc.2022.020886



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2196

    View

  • 1160

    Download

  • 0

    Like

Share Link