Open Access iconOpen Access

ARTICLE

crossmark

A Machine Learning Approach for Early COVID-19 Symptoms Identification

Omer Ali1,2, Mohamad Khairi Ishak1,*, Muhammad Kamran Liaquat Bhatti2

1 School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM), Nibong Tebal, 14300, Penang, Malaysia
2 Department of Electrical Engineering, NFC Institute of Engineering and Technology (NFC IET), Multan, 60000, Pakistan

* Corresponding Author: Mohamad Khairi Ishak. Email: email

(This article belongs to the Special Issue: AI for Wearable Sensing--Smartphone / Smartwatch User Identification / Authentication)

Computers, Materials & Continua 2022, 70(2), 3803-3820. https://doi.org/10.32604/cmc.2022.019797

Abstract

Symptom identification and early detection are the first steps towards a health condition diagnosis. The COVID-19 virus causes pneumonia-like symptoms such as fever, cough, and shortness of breath. Many COVID-19 contraction tests necessitate extensive clinical protocols in medical settings. Clinical studies help with the accurate analysis of COVID-19, where the virus has already spread to the lungs in most patients. The majority of existing supervised machine learning-based disease detection techniques are based on clinical data like x-rays and computerized tomography. This is heavily reliant on a larger clinical study and does not emphasize early symptom detection. The aim of this study is to investigate anomalies in patient physiological data for early COVID-19 symptoms identification. In this context, two of the most prevalent symptoms, fever and cough, were examined in a two-fold manner utilizing an unsupervised machine learning model. To examine disease progression, physiological features from a chest-worn device were analyzed. First, a Single Vector Activity Index (SVAI) parameter is proposed to monitor the breathing and cough patterns. Second, the dataset's variance is examined using the DBSCAN method for clustering and outlier detection. Finally, the model accuracy is evaluated to identify outliers on real-time data based on feature dissimilarities, yielding an overall detection accuracy of 90.34%.

Keywords


Cite This Article

APA Style
Ali, O., Ishak, M.K., Bhatti, M.K.L. (2022). A machine learning approach for early COVID-19 symptoms identification. Computers, Materials & Continua, 70(2), 3803-3820. https://doi.org/10.32604/cmc.2022.019797
Vancouver Style
Ali O, Ishak MK, Bhatti MKL. A machine learning approach for early COVID-19 symptoms identification. Comput Mater Contin. 2022;70(2):3803-3820 https://doi.org/10.32604/cmc.2022.019797
IEEE Style
O. Ali, M.K. Ishak, and M.K.L. Bhatti, “A Machine Learning Approach for Early COVID-19 Symptoms Identification,” Comput. Mater. Contin., vol. 70, no. 2, pp. 3803-3820, 2022. https://doi.org/10.32604/cmc.2022.019797



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2289

    View

  • 1299

    Download

  • 0

    Like

Share Link