Open Access
ARTICLE
Deep Learning Approach for Analysis and Characterization of COVID-19
1 School of Computing, Graphic Era Hill University, Dehradun (UK), India
2 Department of Information Technology, College of Computer and Information Technology, Taif University, Taif, 21944, Saudi Arabia
3 School of Computer Science & IT, JAIN (to be Deemed University), Bangalore, India
4 School of Computing, Dehradun Institute of Technology, Uttarakhand, India
5 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune, India
6 Department of Computer Engineering, College of Computer and Information Technology, Taif University, Taif, 21944, Saudi Arabia
* Corresponding Author: Mamoon Rashid. Email:
(This article belongs to the Special Issue: Emerging Applications of Artificial Intelligence, Machine learning and Data Science)
Computers, Materials & Continua 2022, 70(1), 451-468. https://doi.org/10.32604/cmc.2022.019443
Received 13 April 2021; Accepted 19 May 2021; Issue published 07 September 2021
Abstract
Early diagnosis of a pandemic disease like COVID-19 can help deal with a dire situation and help radiologists and other experts manage human resources more effectively. In a recent pandemic, laboratories perform diagnostics manually, which requires a lot of time and expertise of the laboratorial technicians to yield accurate results. Moreover, the cost of kits is high, and well-equipped labs are needed to perform this test. Therefore, other means of diagnosis is highly desirable. Radiography is one of the existing methods that finds its use in the diagnosis of COVID-19. The radiography observes change in Computed Tomography (CT) chest images of patients, developing a deep learning-based method to extract graphical features which are used for automated diagnosis of the disease ahead of laboratory-based testing. The proposed work suggests an Artificial Intelligence (AI) based technique for rapid diagnosis of COVID-19 from given volumetric chest CT images of patients by extracting its visual features and then using these features in the deep learning module. The proposed convolutional neural network aims to classify the infectious and non-infectious SARS-COV2 subjects. The proposed network utilizes 746 chests scanned CT images of 349 images belonging to COVID-19 positive cases, while 397 belong to negative cases of COVID-19. Our experiment resulted in an accuracy of 98.4%, sensitivity of 98.5%, specificity of 98.3%, precision of 97.1%, and F1-score of 97.8%. The additional parameters of classification error, mean absolute error (MAE), root-mean-square error (RMSE), and Matthew’s correlation coefficient (MCC) are used to evaluate our proposed work. The obtained result shows the outstanding performance for the classification of infectious and non-infectious for COVID-19 cases.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.