Open Access iconOpen Access

ARTICLE

crossmark

Applying Machine Learning Techniques for Religious Extremism Detection on Online User Contents

Shynar Mussiraliyeva1, Batyrkhan Omarov1,*, Paul Yoo1,2, Milana Bolatbek1

1 Al-Farabi Kazakh National University, Almaty, Kazakhstan
2 CSIS, Birkbeck College, University of London, London, UK

* Corresponding Author: Batyrkhan Omarov. Email: email

Computers, Materials & Continua 2022, 70(1), 915-934. https://doi.org/10.32604/cmc.2022.019189

Abstract

In this research paper, we propose a corpus for the task of detecting religious extremism in social networks and open sources and compare various machine learning algorithms for the binary classification problem using a previously created corpus, thereby checking whether it is possible to detect extremist messages in the Kazakh language. To do this, the authors trained models using six classic machine-learning algorithms such as Support Vector Machine, Decision Tree, Random Forest, K Nearest Neighbors, Naive Bayes, and Logistic Regression. To increase the accuracy of detecting extremist texts, we used various characteristics such as Statistical Features, TF-IDF, POS, LIWC, and applied oversampling and undersampling techniques to handle imbalanced data. As a result, we achieved 98% accuracy in detecting religious extremism in Kazakh texts for the collected dataset. Testing the developed machine learning models in various databases that are often found in everyday life “Jokes”, “News”, “Toxic content”, “Spam”, “Advertising” has also shown high rates of extremism detection.

Keywords


Cite This Article

APA Style
Mussiraliyeva, S., Omarov, B., Yoo, P., Bolatbek, M. (2022). Applying machine learning techniques for religious extremism detection on online user contents. Computers, Materials & Continua, 70(1), 915-934. https://doi.org/10.32604/cmc.2022.019189
Vancouver Style
Mussiraliyeva S, Omarov B, Yoo P, Bolatbek M. Applying machine learning techniques for religious extremism detection on online user contents. Comput Mater Contin. 2022;70(1):915-934 https://doi.org/10.32604/cmc.2022.019189
IEEE Style
S. Mussiraliyeva, B. Omarov, P. Yoo, and M. Bolatbek, “Applying Machine Learning Techniques for Religious Extremism Detection on Online User Contents,” Comput. Mater. Contin., vol. 70, no. 1, pp. 915-934, 2022. https://doi.org/10.32604/cmc.2022.019189



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3110

    View

  • 1536

    Download

  • 0

    Like

Share Link