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Abstract: Space-time disease cluster detection assists in conducting disease
surveillance and implementing control strategies. The state-of-the-art method
for this kind of problem is the Space-time Scan Statistics (SaTScan) which has
limitations for non-traditional/non-clinical data sources due to its parametric
model assumptions such as Poisson or Gaussian counts. Addressing this prob-
lem, an Eigenspace-based method called Multi-EigenSpot has recently been
proposed as a nonparametric solution. However, it is based on the population
counts data which are not always available in the least developed countries.
In addition, the population counts are difficult to approximate for some
surveillance data such as emergency department visits and over-the-counter
drug sales, where the catchment area for each hospital/pharmacy is undefined.
We extend the population-based Multi-EigenSpot method to approximate
the potential disease clusters from the observed/reported disease counts only
with no need for the population counts. The proposed adaptation uses an
estimator of expected disease count that does not depend on the population
counts. The proposed method was evaluated on the real-world dataset and the
results were compared with the population-based methods: Multi-EigenSpot
and SaTScan. The result shows that the proposed adaptation is effective in
approximating the important outputs of the population-based methods.

Keywords: Space-time disease clusters; Eigenspace method; nontraditional
data sources; nonparametric methods

1 Introduction

With the advent of electronic medical records, syndromic data sources, and low-cost location
sensors, data on disease occurrences or other health-related events are increasingly encoded with
both spatial and temporal information. Based on this data, Health authorities conduct surveillance
to search for the potential clusters of disease or other health-related events. In public health,
cluster detection aims to identify those spatiotemporal regions that contain unexpected counts
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of disease cases or other health-related events. The detection of such potential clusters facilitates
the health officials’ efforts to identify their targets of interest for possible interventions. Such
clusters show the over-density anomalies in the spatiotemporal space which assist epidemiologists
in finding the environmental factors responsible for a particular disease outbreak in the area.

A number of parametric methods have been developed for detecting space-time clusters in
public health data. The examples are Space-time Scan Statistic (SaTScan) [1,2], Expectation-
based Scan Statistic [3,4], Flexible Space-time Scan Statistic [5,6], Space-time Permutation Scan
Statistic [7,8], and EvoGridStatistic [9,10]. All these methods are based on Maximum Likelihood
Estimation (MLE) which put some constraints on the distribution and quality of data that are
valid only for clinical data which are collected from the hospitals and are not necessarily valid
for non-traditional/nonclinical data sources. For example, data collected from social media [11],
pharmacy sales, and school health surveys are non-traditional or non-clinical data sources for
public health surveillance [12], where the parametric model might be very restrictive i.e., difficult
to be followed. For such data sources, MLE-based methods like SaTScan are not an ideal
choice for disease cluster detection. Addressing this problem, the nonparametric methods called
EigenSpot [13] and Multi-EigenSpot [14] have recently been developed that make no assumption
about the distribution and quality of data. However, these nonparametric methods require that
the population counts be available. This is a big limitation, because, in some least developed
countries census population data are not available. In addition, the population counts are difficult
to approximate for some surveillance data such as emergency department visits and over-the-
counter drugs sales where the catchment area for each hospital/pharmacy is undefined. Even if the
population counts are available, the catchment area population would not be a good denominator
since there can be natural geographical disparity in health-care utilization data, due to disparities
in disease prevalence, access to health care, and consumer behavior [15].

In order to address this problem, we adapt the Multi-EigenSpot algorithm to be applicable for
disease surveillance in such a realistic scenario. Multi-EigenSpot uses a population-based estimator
for expected disease occurrences that has been frequently used in prior arts [9,16]. We propose
an adaptation by using a different estimator of the expected disease occurrences in the algorithm
which does not depend on the population counts. The proposed adaptation infers the expected
disease counts from the observed disease counts only. The experimental evaluation on real-world
data shows that the proposed adaptation is effective in approximating the significant outputs of
the population-based methods.

Some nonparametric alternatives to the MLE-based scan statistics have also been proposed
such as [17–19]. However, these are purely spatial techniques that can detect purely spatial clusters
while this research focuses on the space-time cluster detection problem. It is evident from the
literature that the Eigenspace-based methods [13,14] are the latest nonparametric technique in the
spatiotemporal class of methods for areal-count data.

2 Materials and Methods

The stepwise process of the proposed approach is given below:

Step 1: Given the observed disease counts, estimate the spatiotemporal matrices of expected
disease cases, E and Risk measures, R according to Eqs. (1) and (2), respectively.

Eij =
∑

i Cij×
∑

j Cij
C..

(1)
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E =

⎡
⎢⎢⎢⎣

E11 E12 . . . E1n
E21 E22 . . . E2n
...

... . . .
...

Em1 Em2 . . . Emn

⎤
⎥⎥⎥⎦

where Eij is the expected disease count for ith sub-region over the jth time-point; C.j denotes the

total observed/reported cases in the whole study-area at the jth time-point; P.j the total population

counts in the whole study-area at the jth time-point; pij the population counts in the ith sub-region

at the jth time-point.

Rij =
Cij
Eij

(2)

R=

⎡
⎢⎢⎢⎣

R11 R12 . . . R1n
R21 R22 . . . R2n
...

... . . .
...

Rm1 Rm2 . . . Rmn

⎤
⎥⎥⎥⎦

where Eij is the expected disease count for the ith sub-region over the jth time-point; Cij is the

observed/reported disease count in the ith sub-region at the jth time-point; C.. is the grand total
of the observed/reported disease counts and is calculated as in Eq. (3).

C..=
∑
i

∑
j

Cij (3)

Step 2: Calculate the principal-left and principal-right singular vectors of matrices C and
E using one-rank singular value decomposition. For matrix C, the principal-left singular vector
is denoted by SC and the principal-right singular vector by TC. Similarly, for matrix E, the
principal-left singular vector is denoted by SE and the principal-right singular vector by TE.

Step 3: Compute the difference vector of the left-singular vectors as DS : = SC − SE, and
that of the right-singular vectors as DT =TC−TE.

Step 4: Find the abnormally higher elements in each subtract vector DS and DT by applying
the Z-control chart with the significance level alpha. The abnormally higher elements in the vector
DS are associated with the spatial component of the cluster and in vector DT to the temporal
component.

Step 5: If the abnormally higher elements are found in spatial as well as temporal dimension,
upgrade matrix C by replacing the elements corresponding to the out-of-control components with
the respective expected cases to remove the previous cluster. Simultaneously, matrix R is upgraded
by replacing the elements corresponding to the out-of-control components by their average value.

Step 6: To approximate the additional clusters, if exist, reiterate Steps (2–5) until no out-of-
control element is found in each difference vector.

Step 7: In the upgraded matrix R, replace the elements corresponding to the components
that are not found to be abnormal by 1 to distinguish clearly between the normal and abnormal
regions.
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Step 8: Visualize the resultant matrix R as a heatmap to show multiple clusters with different
colors.

What is novel with the proposed adaptation is the strategy used for estimating the expected
disease counts. Population-based Multi-EigenSpot uses the historical temporal information for
population-at-risk while our proposed method infers this indirectly from the geographical neigh-
borhood. For each region and time point, we calculate the expected number of a particular disease
counts conditioning on the observed marginal.

Figure 1: An example illustrating the proposed approach

2.1 Illustrative Example
Fig. 1 shows the detailed process that how our proposed method detects multiple clusters

in a spatiotemporal space with no requirement for population counts. For instance, assume that
two different hotspots exist in a 3 × 4 spatiotemporal space. The two shaded areas in matrix
C (Fig. 1) are the two clusters of interest to be approximated by our proposed approach. The



CMC, 2022, vol.70, no.1 1949

intersection of the third row with the first-second columns denotes the most likely hotspot and
the second-third rows with the fourth column the secondary (additional) cluster. The input is
only the spatiotemporal matrix of the observed disease counts denoted by C. Given the matrix
C, the proposed method approximates these two clusters in two iterations. The most likely cluster
is detected in the first iteration. The detected hotspot is then removed by replacing the observed
counts with the corresponding expected counts, and the method is repeated for the secondary
cluster. In the last upgraded matrix R, the cells containing the value M1 represent one cluster
and that containing the value M2 represents the other cluster.

Figure 2: Heatmap

3 Results and Discussion

3.1 Experiment with the Real-World Dataset
In this section, the proposed approach is applied to the measles case data in Khyber–

Pakhtunkhwa, Pakistan (Jan 2016–Dec 2016), assuming the population is unknown. This dataset
has been described in detail elsewhere [14]. The proposed method is executed in MATLAB
(version R2014a). Based on the spatiotemporal data on the observed measles cases, the proposed
method with alpha = 0.10, results in a heatmap as shown in Fig. 2, showing the potential measles
hotspots. The resulting heatmap shows three potential measles clusters in Khyber-Pakhtunkhwa
in the period from January 2016 to December 2016. The most likely cluster is seen in the district
of Bannu for May, October, and December with an average Relative Risk (RR) = 1.677, denoted
with a dark red color on the heatmap. The secondary cluster is seen in the district Bannu for
April with an average RR = 1.614, denoted by a light red color on the heatmap. The third cluster
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is seen in the two districts (Kohat and D. I. Khan) for March and April with an average RR
= 1.58, represented with a yellow color on the heatmap. These hotspot regions have also been
detected by the Multi-EigenSpot and Space-time Scan Statistics in the previous study on the same
dataset [14] and hence confirm that the proposed approach is effective for surveillance data with
unknown population-at-risk information.

Figure 3: Geographical map of the study area showing the locations of Measles clusters with red
color

It is obvious from Fig. 3 that all the hotspots’ regions identified by the proposed approach
are adjacent to Federally Administrative Tribal Areas (FATA). Indeed, due to military operations
during the years 2014–2016, the Internally Displaced People (IDP) from FATA were settled in



CMC, 2022, vol.70, no.1 1951

the neighboring districts which might have caused the measles outbreak in the hosting districts.
Because FATA and IDP camps suffer from a low vaccination rate due to lack of awareness [20,21].

3.2 Performance Comparison with Population-Based Methods
In this section, we compare the outputs of our proposed method with Multi-EigenSpot and

SaTScan which have already been applied to the same dataset [14]. The outputs of these three
methods are presented in Tab. 1. It is obvious from Tab. 1 that the regions detected by our pro-
posed method were also detected by Multi-EigenSpot and SaTScan. Our proposed method detects
(Bannu, May, Oct, Dec,) as the most likely cluster and (Bannu, Apr) as the secondary cluster. It is
very interesting to know that the most likely and secondary clusters of the proposed approach are
the same as detected by the population-based Muti-EigenSpot. Moreover, our approach detects
(Kohat, D. I. Khan, Mar, Apr) as the third cluster while Multi-EigenSpot detects (Bannu, Kohat,
D. I. Khan, Mar) as the third cluster, showing the two districts and one month in common.

The outputs of the proposed approach are also included in the significant outputs of the
SaTScan. The Space-time Scan Statistics detects (Bannu, Apr-May) as the most likely cluster. This
cluster is covered by the first two clusters of the proposed method. The secondary cluster of the
SaTScan (Kohat, Mar-Apr) is covered in the third cluster of our proposed method.

Table 1: The outputs of the proposed method, Multi-EigenSpot, and SaTScan

Method The detected clusters

The proposed method 03
(Bannu, May, Oct, Dec), (Bannu, Apr), (Kohat, D. I. Khan,
Mar, Apr)

Multi-EigenSpot 08
(Bannu, May, Oct, Dec), (Bannu-Apr), (Bannu, Kohat,
D.I,Khan, Mar), (Kohat, D.I.khan, Feb), (Kohat, D.I.Khan,
Swat, Jan), (Kohat, D.I.Khan, Swat, Nov), (Kohat, D.I.Khan,
Jun, Jul), (Kohat, D.I.Khan, Swat, Aug).

Space-time scan statistic 08
(Bannu, Apr–May), (Kohat, Mar–Apr), (Shangla, Sep), (Swat,
Nov–Dec), (Buner, Feb), (Charsada, Feb), (Sawabi, Dec),
(Haripur, May).

The proposed approach detects the first three high-risk clusters while using the population
counts, the detection ratio can be increased up to 8 clusters. This suggests that if the population
counts are is possible to be approximated, then using this extra information, Multi-EigenSpot
performs better than our proposed approach.

4 Conclusion

We proposed the first Eigenspace-based method which allows the nonparametric practice
to detect clusters in the scenarios where the population counts are unavailable or difficult to
approximate. Our proposed method replaces the temporal inference in methods like EigenSpot [13]
and Multi-EigenSpot [14] with geographical inference which ultimately results in a method that
can be used for hotspots detection in the least developed countries where population data is not
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available or very expensive to obtain. The results indicate that the proposed approach can detect
the significant clusters with no need for the population counts. The proposed adaptation can
delineate the boundaries of a disease outbreak and its potential to guide the control efforts in
many least developed countries where the population data are not available or difficult to access.
In addition, the proposed method can be used as a nonparametric solution for cluster detection
in many research fields such as criminology [22,23], network [24], and environment [25] where the
population data is not relevant.

The proposed method does not account for the spatial and temporal covariates which would
make it impractical to examine all ‘unusual’ events, implicitly diminishing the significance of the
surveillance. Extending the proposed method to adjust the population-at-risk-data for spatial and
temporal covariate is recommended for future work in this area.
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