Open Access
ARTICLE
Tour Planning Design for Mobile Robots Using Pruned Adaptive Resonance Theory Networks
1 Department of CSE, E. G. S. Pillay Engineering College, Nagapattinam, 611002, Tamil Nadu, India
2 Department of IT, E. G. S. Pillay Engineering College, Nagapattinam, 611002, Tamil Nadu, India
* Corresponding Author: S. Palani Murugan. Email:
Computers, Materials & Continua 2022, 70(1), 181-194. https://doi.org/10.32604/cmc.2022.016152
Received 08 April 2021; Accepted 10 May 2021; Issue published 07 September 2021
Abstract
The development of intelligent algorithms for controlling autonom- ous mobile robots in real-time activities has increased dramatically in recent years. However, conventional intelligent algorithms currently fail to accurately predict unexpected obstacles involved in tour paths and thereby suffer from inefficient tour trajectories. The present study addresses these issues by proposing a potential field integrated pruned adaptive resonance theory (PPART) neural network for effectively managing the touring process of autonomous mobile robots in real-time. The proposed system is implemented using the AlphaBot platform, and the performance of the system is evaluated according to the obstacle prediction accuracy, path detection accuracy, time-lapse, tour length, and the overall accuracy of the system. The proposed system provide a very high obstacle prediction accuracy of 99.61%. Accordingly, the proposed tour planning design effectively predicts unexpected obstacles in the environment and thereby increases the overall efficiency of tour navigation.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.