Open Access iconOpen Access

ARTICLE

crossmark

Augmented Node Placement Model in -WSN Through Multiobjective Approach

by Kalaipriyan Thirugnansambandam1, Debnath Bhattacharyya2, Jaroslav Frnda3, Dinesh Kumar Anguraj2, Jan Nedoma4,*

1 School of Computer Science and Engineering, VIT University, Chennai Campus, Tamilnadu, India
2 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
3 Department of Quantitative Methods and Economic Informatics, Faculty of Operation and Economics of Transport and Communications, University of Zilina, 010 26 Zilina, Slovakia
4 Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 708 33 Ostrava-Poruba, Czech Republic

* Corresponding Author: Jan Nedoma. Email: email

Computers, Materials & Continua 2021, 69(3), 3629-3644. https://doi.org/10.32604/cmc.2021.018939

Abstract

In Wireless Sensor Network (WSN), coverage and connectivity are the vital challenges in the target-based region. The linear objective is to find the positions to cover the complete target nodes and connectivity between each sensor for data forwarding towards the base station given a grid with target points and a potential sensor placement position. In this paper, a multiobjective problem on target-based WSN (t-WSN) is derived, which minimizes the number of deployed nodes, and maximizes the cost of coverage and sensing range. An Evolutionary-based Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) is incorporated to tackle this multiobjective problem efficiently. Multiobjective problems are intended to solve different objectives of a problem simultaneously. Bio-inspired algorithms address the NP-hard problem most effectively in recent years. In NSGA-II, the Non-Dominated sorting preserves the better solution in different objectives simultaneously using dominance relation. In the diversity maintenance phase, density estimation and crowd comparison are the two components that balance the exploration and exploitation phase of the algorithm. Performance of NSGA-II on this multiobjective problem is evaluated in terms of performance indicators Overall Non-dominated Vector Generation (ONGV) and Spacing (SP). The simulation results show the proposed method performs outperforms the existing algorithms in different aspects of the model.

Keywords


Cite This Article

APA Style
Thirugnansambandam, K., Bhattacharyya, D., Frnda, J., Anguraj, D.K., Nedoma, J. (2021). Augmented node placement model in -WSN through multiobjective approach. Computers, Materials & Continua, 69(3), 3629-3644. https://doi.org/10.32604/cmc.2021.018939
Vancouver Style
Thirugnansambandam K, Bhattacharyya D, Frnda J, Anguraj DK, Nedoma J. Augmented node placement model in -WSN through multiobjective approach. Comput Mater Contin. 2021;69(3):3629-3644 https://doi.org/10.32604/cmc.2021.018939
IEEE Style
K. Thirugnansambandam, D. Bhattacharyya, J. Frnda, D. K. Anguraj, and J. Nedoma, “Augmented Node Placement Model in -WSN Through Multiobjective Approach,” Comput. Mater. Contin., vol. 69, no. 3, pp. 3629-3644, 2021. https://doi.org/10.32604/cmc.2021.018939



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1594

    View

  • 1094

    Download

  • 0

    Like

Share Link