Open Access iconOpen Access

ARTICLE

crossmark

Path Planning of Quadrotors in a Dynamic Environment Using a Multicriteria Multi-Verse Optimizer

Raja Jarray1, Mujahed Al-Dhaifallah2,*, Hegazy Rezk3,4, Soufiene Bouallègue1,5

1 Research Laboratory in Automatic Control (LARA), National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunis, 1002, Tunisia
2 Department of Systems Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
3 College of Engineering at Wadi Addawaser, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11911, Saudi Arabia
4 Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia, 61517, Egypt
5 High Institute of Industrial Systems of Gabès (ISSIG), University of Gabès, Gabès, 6011, Tunisia

* Corresponding Author: Mujahed Al-Dhaifallah. Email: email

Computers, Materials & Continua 2021, 69(2), 2159-2180. https://doi.org/10.32604/cmc.2021.018752

Abstract

Paths planning of Unmanned Aerial Vehicles (UAVs) in a dynamic environment is considered a challenging task in autonomous flight control design. In this work, an efficient method based on a Multi-Objective Multi-Verse Optimization (MOMVO) algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles. Such a path planning task is formulated as a multicriteria optimization problem under operational constraints. The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles. The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal. To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives, the modified Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is investigated. A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm (MSSA), Multi-Objective Grey Wolf Optimizer (MOGWO), Multi-Objective Particle Swarm Optimization (MOPSO), and Non-Dominated Genetic Algorithm II (NSGAII) is used as a basis for the performance comparison. Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method. The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.

Keywords


Cite This Article

APA Style
Jarray, R., Al-Dhaifallah, M., Rezk, H., Bouallègue, S. (2021). Path planning of quadrotors in a dynamic environment using a multicriteria multi-verse optimizer. Computers, Materials & Continua, 69(2), 2159-2180. https://doi.org/10.32604/cmc.2021.018752
Vancouver Style
Jarray R, Al-Dhaifallah M, Rezk H, Bouallègue S. Path planning of quadrotors in a dynamic environment using a multicriteria multi-verse optimizer. Comput Mater Contin. 2021;69(2):2159-2180 https://doi.org/10.32604/cmc.2021.018752
IEEE Style
R. Jarray, M. Al-Dhaifallah, H. Rezk, and S. Bouallègue, “Path Planning of Quadrotors in a Dynamic Environment Using a Multicriteria Multi-Verse Optimizer,” Comput. Mater. Contin., vol. 69, no. 2, pp. 2159-2180, 2021. https://doi.org/10.32604/cmc.2021.018752

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2448

    View

  • 1644

    Download

  • 0

    Like

Share Link