Open Access iconOpen Access

ARTICLE

crossmark

Mathematical Morphology-Based Artificial Technique for Renewable Power Application

Buddhadeva Sahoo1,*, Sangram Keshari Routray2, Pravat Kumar Rout2, Mohammed M. Alhaider3

1 Department of Electrical Engineering, Siksha ‘O’ Anusandhan University, Odisha, 751030, India
2 Department of Electrical Electronics Engineering, Siksha ‘O’ Anusandhan University, Odisha, 751030, India
3 College of Engineering at Wadi Addawaser, Prince Sattam bin Abdulaziz University, 11991, Saudi Arabia

* Corresponding Author: Buddhadeva Sahoo. Email: email

Computers, Materials & Continua 2021, 69(2), 1851-1875. https://doi.org/10.32604/cmc.2021.018535

Abstract

This paper suggests a combined novel control strategy for DFIG based wind power systems (WPS) under both nonlinear and unbalanced load conditions. The combined control approach is designed by coordinating the machine side converter (MSC) and the load side converter (LSC) control approaches. The proposed MSC control approach is designed by using a model predictive control (MPC) approach to generate appropriate real and reactive power. The MSC controller selects an appropriate rotor voltage vector by using a minimized optimization cost function for the converter operation. It shows its superiority by eliminating the requirement of transformation, switching table, and the PWM techniques. The proposed MSC reduces the cost, complexity, and computational burden of the WPS. On the other hand, the LSC control approach is designed by using a mathematical morphological technique (MMT) for appropriate DC component extraction. Due to the appropriate DC-component extraction, the WPS can compensate the harmonics during both steady and dynamic states. Further, the LSC controller also provides active power filter operation even under the shutdown of WPS condition. To verify the applicability of coordinated control operation, the WPS-based microgrid system is tested under various test conditions. The proposed WPS is designed by using a MATLAB/Simulink software.

Keywords


Cite This Article

APA Style
Sahoo, B., Routray, S.K., Rout, P.K., Alhaider, M.M. (2021). Mathematical morphology-based artificial technique for renewable power application. Computers, Materials & Continua, 69(2), 1851-1875. https://doi.org/10.32604/cmc.2021.018535
Vancouver Style
Sahoo B, Routray SK, Rout PK, Alhaider MM. Mathematical morphology-based artificial technique for renewable power application. Comput Mater Contin. 2021;69(2):1851-1875 https://doi.org/10.32604/cmc.2021.018535
IEEE Style
B. Sahoo, S.K. Routray, P.K. Rout, and M.M. Alhaider, “Mathematical Morphology-Based Artificial Technique for Renewable Power Application,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1851-1875, 2021. https://doi.org/10.32604/cmc.2021.018535



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2096

    View

  • 1396

    Download

  • 0

    Like

Share Link