Open Access iconOpen Access

ARTICLE

crossmark

AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion

Guimin Hou1, Jiaohua Qin1,*, Xuyu Xiang1, Yun Tan1, Neal N. Xiong2

1 College of Computer Science and Information Technology, Central South University of Forestry & Technology, Changsha, 410004, China
2 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, 74464, OK, USA

* Corresponding Author: Jiaohua Qin. Email: email

Computers, Materials & Continua 2021, 69(2), 1877-1891. https://doi.org/10.32604/cmc.2021.017481

Abstract

Medical image segmentation is an important application field of computer vision in medical image processing. Due to the close location and high similarity of different organs in medical images, the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation. To address these challenges, we propose a medical image segmentation network (AF-Net) based on attention mechanism and feature fusion, which can effectively capture global information while focusing the network on the object area. In this approach, we add dual attention blocks (DA-block) to the backbone network, which comprises parallel channels and spatial attention branches, to adaptively calibrate and weigh features. Secondly, the multi-scale feature fusion block (MFF-block) is proposed to obtain feature maps of different receptive domains and get multi-scale information with less computational consumption. Finally, to restore the locations and shapes of organs, we adopt the global feature fusion blocks (GFF-block) to fuse high-level and low-level information, which can obtain accurate pixel positioning. We evaluate our method on multiple datasets(the aorta and lungs dataset), and the experimental results achieve 94.0% in mIoU and 96.3% in DICE, showing that our approach performs better than U-Net and other state-of-art methods.

Keywords


Cite This Article

APA Style
Hou, G., Qin, J., Xiang, X., Tan, Y., Xiong, N.N. (2021). Af-net: A medical image segmentation network based on attention mechanism and feature fusion. Computers, Materials & Continua, 69(2), 1877-1891. https://doi.org/10.32604/cmc.2021.017481
Vancouver Style
Hou G, Qin J, Xiang X, Tan Y, Xiong NN. Af-net: A medical image segmentation network based on attention mechanism and feature fusion. Comput Mater Contin. 2021;69(2):1877-1891 https://doi.org/10.32604/cmc.2021.017481
IEEE Style
G. Hou, J. Qin, X. Xiang, Y. Tan, and N.N. Xiong, “AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion,” Comput. Mater. Contin., vol. 69, no. 2, pp. 1877-1891, 2021. https://doi.org/10.32604/cmc.2021.017481

Citations




cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2166

    View

  • 1384

    Download

  • 0

    Like

Share Link