Vol.69, No.2, 2021, pp.1877-1891, doi:10.32604/cmc.2021.017481
OPEN ACCESS
ARTICLE
AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion
  • Guimin Hou1, Jiaohua Qin1,*, Xuyu Xiang1, Yun Tan1, Neal N. Xiong2
1 College of Computer Science and Information Technology, Central South University of Forestry & Technology, Changsha, 410004, China
2 Department of Mathematics and Computer Science, Northeastern State University, Tahlequah, 74464, OK, USA
* Corresponding Author: Jiaohua Qin. Email:
Received 31 January 2021; Accepted 16 April 2021; Issue published 21 July 2021
Abstract
Medical image segmentation is an important application field of computer vision in medical image processing. Due to the close location and high similarity of different organs in medical images, the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation. To address these challenges, we propose a medical image segmentation network (AF-Net) based on attention mechanism and feature fusion, which can effectively capture global information while focusing the network on the object area. In this approach, we add dual attention blocks (DA-block) to the backbone network, which comprises parallel channels and spatial attention branches, to adaptively calibrate and weigh features. Secondly, the multi-scale feature fusion block (MFF-block) is proposed to obtain feature maps of different receptive domains and get multi-scale information with less computational consumption. Finally, to restore the locations and shapes of organs, we adopt the global feature fusion blocks (GFF-block) to fuse high-level and low-level information, which can obtain accurate pixel positioning. We evaluate our method on multiple datasets(the aorta and lungs dataset), and the experimental results achieve 94.0% in mIoU and 96.3% in DICE, showing that our approach performs better than U-Net and other state-of-art methods.
Keywords
Deep learning; medical image segmentation; feature fusion; attention mechanism
Cite This Article
Hou, G., Qin, J., Xiang, X., Tan, Y., Xiong, N. N. (2021). AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion. CMC-Computers, Materials & Continua, 69(2), 1877–1891.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.