TY - EJOU
AU - Hashim, Ishak
AU - Draman, Nur Nabilah Che
AU - Karim, Samsul Ariffin Abdul
AU - Yeo, Wee Ping
AU - Baleanu, Dumitru
TI - Scattered Data Interpolation Using Cubic Trigonometric Bézier Triangular Patch
T2 - Computers, Materials \& Continua
PY - 2021
VL - 69
IS - 1
SN - 1546-2226
AB - This paper discusses scattered data interpolation using cubic trigonometric Bézier triangular patches with continuity everywhere. We derive the condition on each adjacent triangle. On each triangular patch, we employ convex combination method between three local schemes. The final interpolant with the rational corrected scheme is suitable for regular and irregular scattered data sets. We tested the proposed scheme with 36,65, and 100 data points for some well-known test functions. The scheme is also applied to interpolate the data for the electric potential. We compared the performance between our proposed method and existing scattered data interpolation schemes such as Powell–Sabin (PS) and Clough–Tocher (CT) by measuring the maximum error, root mean square error (RMSE) and coefficient of determination (). From the results obtained, our proposed method is competent with cubic Bézier, cubic Ball, PS and CT triangles splitting schemes to interpolate scattered data surface. This is very significant since PS and CT requires that each triangle be splitting into several micro triangles.
KW - Cubic trigonometric; Bézier triangular patches; *C*^{1}sufficient condition; scattered data interpolation
DO - 10.32604/cmc.2021.016006