Open Access iconOpen Access

ARTICLE

crossmark

Multi-Head Attention Graph Network for Few Shot Learning

Baiyan Zhang1, Hefei Ling1,*, Ping Li1, Qian Wang1, Yuxuan Shi1, Lei Wu1, Runsheng Wang1, Jialie Shen2

1 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
2 School of Electronics, Electrical Engineering and Computer Science, Queens University, Belfast, BT7 1NN, UK

* Corresponding Author: Hefei Ling. Email: email

Computers, Materials & Continua 2021, 68(2), 1505-1517. https://doi.org/10.32604/cmc.2021.016851

Abstract

The majority of existing graph-network-based few-shot models focus on a node-similarity update mode. The lack of adequate information intensifies the risk of overtraining. In this paper, we propose a novel Multi-head Attention Graph Network to excavate discriminative relation and fulfill effective information propagation. For edge update, the node-level attention is used to evaluate the similarities between the two nodes and the distribution-level attention extracts more in-deep global relation. The cooperation between those two parts provides a discriminative and comprehensive expression for edge feature. For node update, we embrace the label-level attention to soften the noise of irrelevant nodes and optimize the update direction. Our proposed model is verified through extensive experiments on two few-shot benchmark MiniImageNet and CIFAR-FS dataset. The results suggest that our method has a strong capability of noise immunity and quick convergence. The classification accuracy outperforms most state-of-the-art approaches.

Keywords


Cite This Article

APA Style
Zhang, B., Ling, H., Li, P., Wang, Q., Shi, Y. et al. (2021). Multi-head attention graph network for few shot learning. Computers, Materials & Continua, 68(2), 1505-1517. https://doi.org/10.32604/cmc.2021.016851
Vancouver Style
Zhang B, Ling H, Li P, Wang Q, Shi Y, Wu L, et al. Multi-head attention graph network for few shot learning. Comput Mater Contin. 2021;68(2):1505-1517 https://doi.org/10.32604/cmc.2021.016851
IEEE Style
B. Zhang et al., “Multi-Head Attention Graph Network for Few Shot Learning,” Comput. Mater. Contin., vol. 68, no. 2, pp. 1505-1517, 2021. https://doi.org/10.32604/cmc.2021.016851



cc Copyright © 2021 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2445

    View

  • 1282

    Download

  • 0

    Like

Share Link